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Genera Info

• HW2 is out. Due on Monday October 19.

• Midquarter Feedback Survey on Canvas.

• Next Wednesday: Prof. David Donoho will talk about ARCH,

GARCH, and stochastic volatility models.
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So far:

• ARMA(p, q) is a useful model for stationary processes.

• We can express ACF and optimal linear m-step forecast in terms

of model’s parameters.

• We can fit ARMA(p, q) to data using several techniques. Leading

to asymptotically normal estimators.

Next:

• ARMA + Seasonality and Trend (ARIMA, SARIMA)

• How to build ARMA, ARIMA, and SARIMA from data?

• Diagnostics.
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ARIMA



IMA Models

• Motivation: Random walk

xt = xt−1 + wt , wt is white noise.

• The process

∇xt = (1− B)xt = wt

is stationary.

• Definition: IMA(d , q) process (Integrated MA)

∇dxt = θ(B)wt

where wt is white noise, θ(B) =
∑q

j=0 θjB
j , and θ0 = 1.

• Examples:

• IMA(d = 0, q = 0) is white noise.

• IMA(0, q) = MA(q).

• IMA(1, 0) is random walk.

• IMA(2, 0) is Integrated random walk.

• IMA(1, 1) is random walk with MA correlated increments, aka

Exponential Weighted MA (EWMA): “Most Frequently-used IMA

Model.” 4



EWMA

• Usually written as

xt = xt−1 + wt − λwt−1, |λ| < 1, x0 = 0

(i.e., θ = −λ).

• Because MA polynomial is invertible,

xt =
∞∑
u=1

(1− λ)λu−1xt−u + wt .

• One-step ahead prediction

xnn+1 =
∞∑
u=0

(1− λ)λuxn−u.

• Neat updating formula as weighted average of new data and old

prediction:

xnn+1 = (1− λ)xn + λxn−1n .

larger values of λ lead to smoother estimate.
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EWMA – Example 3.33

Example: 3.33 Fit IMA(1,1) to logged Glacial Varve Series

x = diff(log(varve)) # log transform + diff

acf(x, 48)

Fit an MA(1):

fit <- arima(log(varve), order=c(0,1,1))

fit$coef

ma1: -0.770539867652878

Suggested model:

log(xt) = log(xt−1) + wt − 0.771wt−1.

Implies a smoother for Glacial Varve series

st = 0.229 log(xt) + 0.771st−1. 6



ARIMA Process

• Definition: xt is ARIMA(p, d , q) if

∇dxt = (1− B)dxt

is ARMA(p, q). We write

φ(B)(1− B)dxt = θ(B)wt .

• Examples:

• d = 0: classical ARMA(p, q)

• d = 1: random walk with ARMA(p, q)-correlated increments.

• Operationally: We difference the time series d times to produce a

stationary time series, then use an ARMA model of the result of

differencing.

7



Basic Steps in Building ARIMA Models

• Plotting the data.

• Possibly transforming the data.

• Identifying the dependence order of the model.

• Parameter estimation.

• Diagnostic.

• Model Choice.
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Example – ARIMA Modelling of US GNP Data

Data: Quarterly U.S. GNP from 1947(1) to 2002(3), n = 223

observations.

Data seem nonstationary – trending.
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ARIMA Modelling of US GNP Data (cont’d)

Take logs and difference:

xt ≡ ∇ log(yt)

• Differencing eliminates trend.

• Data seem more nearly stationary.

• Difference of Log = rate of growth (‘natural’ quantity). 10



ARIMA Modelling of US GNP Data (cont’d)

ACF and PACF of Differenced Log GNP

MA(2)?
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ARIMA Modelling of US GNP Data (cont’d)

MLE fit of MA(2):

arima(gnpgr , order=c(0, 0, 2)) # MA(2)

Call:

arima(x = gnpgr , order = c(0, 0, 2))

Coefficients:

ma1 ma2 intercept

0.3028 0.2035 0.0083

s.e. 0.0654 0.0644 0.0010

sigma^2 estimated as 8.919e-05: log likelihood = 719.96 , aic = -1431.93

MA(2) fit:

x̂t = 0.08 + 0.303ŵt−1 + 0.204ŵt−2 + ŵt , σ̂w = 0.00009

over 219 degrees of freedom.
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ARIMA Modelling of US GNP Data (cont’d)

• Equivalent AR representation:

ARMAtoAR(ar=0, ma=c(0.303 , 0.204) , 10) # prints pi-weights

• Suggests that AR(1) May also fit well.

• Indeed:

arima(gnpgr , order=c(1, 0, 0)) # AR(1)

Coefficients:

ar1 intercept

0.3467 0.0083

s.e. 0.0627 0.0010
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ARIMA Modelling of US GNP Data (cont’d)

Final Models for yt = GNPt

• ARIMA(0, 1, 2):

(1− B) log(yt) = .008 + (1 + .303B + .204B2)wt , σ̂2
w = .0094

on 219 degrees of freedom.

• ARIMA(1, 1, 0):

(1− .347B)(1− B) log(yt) = .008(1− .347) + wt , σ̂2
w = .0095

on 220 degrees of freedom.

Next step: Diagnostics
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Diagnostics for GNP Growth Rate (Example 3.40)

sarima(gnpgr , 0, 0, 2) # MA(2)
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Diagnostics

• Standardized residuals (innovations)

et =
xt − x̂ t−1t√

P̂ t−1
t

x̂ t−1t is the one-step ahead prediction of xt based on the fitted

model. P̂ t−1
t is the estimated one-step-ahead error variance.

• Inspect marginal normality: Q-Q plot of residuals

Φ−1
(
i − 1/2

n

)
vs e(i), i = 1, . . . , n

e(i) is the residuals i-th order statistics.

• Inspect ρ̂e (the sample ACF of et) for patterns or large values.

• Ljung-Box Test (Portmanteau Test): Compare

Q = n(n + 2)
H∑

h=1

ρ̂e(h)2

n − h

to χ2
H−p−q.
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Diagnostics for Glacial Varve ARIMA(0, 1, 1) (Example 3.41)
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Diagnostics for Glacial Varve ARIMA(1, 1, 1) (Example 3.41)
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SARIMA



Seasonal ARMA Models

• Definition: Seasonal ARMA(P,Q)s :

ΦP(Bs)xt = ΘQ(Bs)wt ,

where

ΦP(Bs) = 1− Φ1B
s − Φ2B

2s − . . .− ΦPB
Ps ,

ΘQ(Bs) = 1 + Θ1B
s + Θ2B

2s + . . .+ ΘQB
Qs ,

(seasonal AR operator of order P and seasonal MA operator of

order Q, with seasonal period s).

• Examples:

• Annual SARMA(1, 1)12:

xt = Φxt−12 + wt + Θwt−12.

• Quarterly SMA(2)4:

xt = wt + Θ1wt−4 + Θ2wt−8.

• Weekly SAR(3)52:

xt = wt + Φ1xt−52 + Φ2xt−104 + Φ3xt−156.
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Example 3.46: SAR(1)

xt = Φxt−12 + wt (yearly seasonal period s = 12 months)
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Contrasting the PACF and ACF

SAR(P)s SMA(Q)s SARMA(p, q)s

ACF(ks) Decays Cutoff k > Q Decays

PACF(ks) Cutoff k > P Decays Decays

21



Seasonal ARMA Models

• Definition: Seasonal ARMA(p, q)× (P,Q)s :

ΦP(Bs)φ(B)xt = ΘQ(Bs)Θ(B)wt ,

where:

• ΦP(B s) = 1 −
∑P

i=1 ΦiB
si

• ΘQ(B s) = 1 +
∑Q

i=1 ΘiΦiB
si

• φ(B) = 1 −
∑p

i=1 φiB
i

• θ(B) = 1 +
∑q

i=1 θiB
i

• wt is white noise

• Definition: Seasonal ARIMA(p, d , q)× (P,D,Q)s :

ΦP(Bs)φ(B)∇D
s ∇dxt = ΘQ(Bs)Θ(B)wt ,

where ∇D
s = (1− Bs)D .
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Example 3.48: SARIMA(0, 1, 1)× (0, 1, 1)12

∇12∇xt = Θ(B12)θ(B)wt

or

(1− B12)(1− B)xt = (1 + ΘB12)(1 + θB)wt ,

or

xt = xt−1 + xt−12 − xt−13 + wt + θwt−1 + Θwt−12 + Θθwt−13.
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Example 3.49: Air Passengers

Monthly totals of international airline passengers between 1949 to 1960.

x = AirPassengers; lx = log(x);

dlx = diff(lx); ddlx = diff(dlx , 12)

plot.ts(cbind(x, lx , dlx , ddlx), main="")
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Example 3.49: Air Passengers (cont’d)

• Seasonal components: suggest SMA(1), P = 0, Q = 1, in the

season s = 12.

• Non-Seasonal components: suggest ARMA(1, 1) within the

seasons.
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Example 3.49: Air Passengers (cont’d)

• Try to fit SARIMA(1, 1, 1)× (0, 1, 1)12 on the logged data:

sarima(lx, 1,1,1, 0,1,1,12)

Estimate SE t.value p.value

ar1 0.1960 0.2475 0.7921 0.4298

ma1 -0.5784 0.2132 -2.7127 0.0076

sma1 -0.5643 0.0747 -7.5544 0.0000

AR parameter is not significant.

• Try to fit SARIMA(0, 1, 1)× (0, 1, 1)12:

sarima(lx, 0,1,1, 0,1,1, 12)

Estimate SE t.value p.value

ma1 -0.4018 0.0896 -4.4825 0

sma1 -0.5569 0.0731 -7.6190 0

$AIC -5.58133 $AICc -5.56625 $BIC -6.540082

• Try to fit SARIMA(1, 1, 0)× (0, 1, 1)12:

sarima(lx, 1,1,0, 0,1,1, 12)

Estimate SE t.value p.value

ar1 -0.3395 0.0822 -4.1295 1e-04

sma1 -0.5619 0.0748 -7.5109 0e+00

$AIC -5.567081 $AICc -5.552002 $BIC -6.525834 26



Example 3.49: Air Passengers (cont’d)

We pick ARIMA(0, 1, 1)× (0, 1, 1)12.
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Example 3.49: Air Passengers (cont’d)

sarima.for(lx , 24, 0,1,1, 0,1,1,12) # 24 months forecast
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