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Genera Info

e Home assignment is out. Due Monday 10/5/2020.

Option to drop the final assessment.
e No lecture on Monday (9/28/2020).
| would like to give the missing lecture at 10:00-11:20 on Friday

10/2/2020. Please let us know if you cannot attend.
stats207-aut2021-staff@lists.stanford.edu
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DATA WRANGLING

SMOOTHING



Motivation

Typically, data is does not follow a stationary model. It has

e Trend components

e Seasonality and periodic components

In this lecture: techniques for estimating and removing trend and

periodic components.
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Data Wrangling



Useful Transformations

e Detrending
yr =Xt — o — Pt

Differencing
Ye = VXt = Xt — X¢—1

e Backshift

Bxt = xt_1

Differencing of order d
V% = (I — B)¥x
Power transformations

{(X{\ —1)/A A>0
Yt =
log(x:) A=0.



Trend Model

Chicken Price over Time and SLR
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e Suppose
Xt =Yyt + m;
where (y;) is stationary and (m,) is a deterministic trend.
e Ideology: Remove trend, so that data exhibits steady behavior over
time. Then assume stationarity for estimation and prediction.



Detrending Chicken Prices (Example 2.4)
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Parametric Trend Estimation

e Assume a parametric model: m; = f(t; 3). Estimate §.
e The detrended series is 9, = x; — f(t; f3).
e Examples:

e Polynomial regression

f(t; B) = Bo + Bit + fot® + Bt

(recall Example 2.4: chicken prices).
e Periodic regression (period T is known)

f(t; @) = a1 cos(2mt/T) + azsin(2wt/T)
e Hybrid: Polynomial + Periodic
f(t; B,a) = Bo + tB1 + a1 cos(2mt/ T) + azsin(2wt/ T).

e Advantages:
e Gives an accurate estimate when model assumptions are correct.
e Easy to predict future observations.
e Disadvantages:
e Selecting the correct model might be difficult.
e Parametric form might be unrealistic in practice.



Differencing

e First order differencing:
Ve =Vxe =xt — xt_1
=Yt = Yr—1+ Mg — My
(V =1 — B where B is the backshift operator: Bx; = x;_1).
e Definition: Differences of order d are
vi=(@1-B)?
(useful when m; is approximately polynomial).

e Advantage:

e No parameters are estimated.

e Especially useful if data behaves as a random walk (cf. Example 2.6).
e Disadvantage:

e Does not yield an estimate of the stationary process y;.



o x; = o+t + ye
° xt=t2-|—yt:

e Prediction:



Example 2.5:

Chicken Prices
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Example 2.5: Detrending and Differencing ACF
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Log and Power Transformations

e Log transformation
yr = log xt.
Applies to non-negative data. Tends to suppress large
fluctuations occurring over portions of the series.

e Generalization: Box-Cox power transformation

log(x) A=

e Goals:
e Equalize variability over time.
e Improve approximation to normality.
e Improve linearity in predicting based on another series.
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Example 2.7:

Daily Views of RBG’s Wikipedia Page
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Smoothing




Motivation: Discovering EI-Nind Effect in SOl Data
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Smoothing

e Estimating trend m; by a weighted average in a neighborhood:

q

X 1
mt:2q+1zajt1 2q—|—1ZJ 2+1Z ajYr—j

j==q Jj=—q

(typically 357 a; =1, a; > 0)

e Useful in discovering long-term trend and seasonal components.

e In the following examples we smooth SOl and discover the periodic
EI-Nind effect.
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Moving Average Smoothing (Example 2.11)

6
my = E aiXe—i

i=—6
a=at;=...=ays =1/12, and azs = 1/24 ("boxcar”).
wgts = c(.5, rep(1,11), .5)/12
soif = filter(soi, sides=2, filter=wgts)
tsplot (soi)
lines (soif, lwd=2, col=4)
par(fig = c(.756, 1, .75, 1), new = TRUE) # the insert
nwgts = c(rep(0,20), wgts, rep(0,20))

ann=FALSE, main="Smoothed SO0I")
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plot (nwgts, type="1", ylim = c(-.02,.1), xaxt=’n’, yaxt=’n’,
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Kernel Method (Example 2.12)

n

me=>" wi(t)x, w;(t):K(t;’)/zn:K(t;j).

i=1

In the following K(t) = \/% exp{—t2/2}.

tsplot (soi)

lines (ksmooth(time(soi), soi, "normal", bandwidth=1), 1lwd=2, col=4)
par(fig = c(.756, 1, .75, 1), new = TRUE) # the insert

gauss = function(x) { 1/sqrt(2*pi) * exp(-(x"2)/2) }

x = seq(from = -3, to = 3, by = 0.001)

plot(x, gauss(x), type ="1", ylim=c(-.02,.45), xaxt=’n’, yaxt=’n’,

ann=FALS
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Lowess (Example 2.13)

. Estimate X; based on its k-nearest neighbors {x;_y /2, ..., X¢, Xek/2}-
Set my = )?t-

tsplot (soi)

lines (lowess(soi, f£=.05), lwd=2, col=4) # El Nino cycle
lines(lowess(soi), 1lty=2, lwd=2, col=2) # trend (with default span
# = 2/3 of data)
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Smoothing Splines

e Smoothing Splines: Find f(t) that minimizes

n

S F(O)F A [ (£ e
t=1
over the class of twice differentiable functions.
e The minimizer f(t) is a piecewise cubic polynomial with knots at
t=1,...,n.
e ) trades-off between fitting the data and roughness of the function
estimate
e )\ =0 leads to m: = x; (no smoothing).
e )\ — oo leads to my = ¢ + vt.

e Also useful for interpolation when time grid is non-uniform or
when there are missing values.
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Smoothing Splines (Example 2.14)

plot (s )
1nes( th.
lines (s th.

spline(time(soi), soi, spar=.5), lwd=2, col=4)
pl e(time(soi), soi, spar= 1), 1lty=2, 1lwd=2, col=2)

ol
w[ "

“'n i ”'ﬁ"p e ”' r‘nl.l :,f“ I

T
1950

20



Isotonic Trend Estimation

Estimate monotone trend where m; < ... < m, by solving the convex
optimization problem

n
min Z(Xt — at)2 subject to a; < ... < a,.
ai,---,an —

e Advantages:
1. Non parametric.
2. No smoothing parameters.
3. Gives estimate also for end-points
e Disadvantages:
e Monotonicity assumption might be too strong.
e No straightforward approach for predicting future values.
e Not helpful if data is already monotone.
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Example: Stock Price of Alphabet Inc.

getSymbols ("GOOGL") #GOOGL is the ticker or stock symbol for Alphabet Inc.

tsplot (as.numeric (GOOGL$GOOGL.Close), ylab = "daily prices",
xlab = "Days from 2007-01-03 to 2020-09-18", type = "1",
main = "Stock prices of Alphabet Inc. (GOOGL) stock")

mu <- isoreg(GOOGL$GOOGL.Close) #Isotronic trend estimation
par (par (mfrow=c(2,1)))
tsplot (mu, main = "Isotonic Trend")

Stock prices of Alphabet Inc. (GOOGL) stock Isotonic Trendof GOOGL
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Smoothing one series as a function of another

Recall Example 2.2: Temperature, Mortality and Pollution.

plot (tempr, cmort, xlab="Temperature', ylab="Mortality")

lines (lowess (tempr, cmort), col = 2)
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Recap

e First:

1. Transform data for constant variance.
2. Remove trend components.
3. Remove seasonality/periodic components.

o If the residuals exhibit steady behavior over time, assume
stationarity.

In the next unit we will work with models for stationary data.
Note: in many cases (when the SNR is low), the fitted deterministic
model resulting from steps 1-3 is already useful.
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