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Genera Info

• Home assignment is out. Due Monday 10/5/2020.

• Option to drop the final assessment.

• No lecture on Monday (9/28/2020).

• I would like to give the missing lecture at 10:00-11:20 on Friday

10/2/2020. Please let us know if you cannot attend.

stats207-aut2021-staff@lists.stanford.edu

1

mailto:stats207-aut2021-staff@lists.stanford.edu


Outline

Data Wrangling

Smoothing
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Motivation

Typically, data is does not follow a stationary model. It has

• Trend components

• Seasonality and periodic components

In this lecture: techniques for estimating and removing trend and

periodic components.
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Data Wrangling



Useful Transformations

• Detrending

yt = xt − β0 − β1t

• Differencing

yt = ∇xt = xt − xt−1

• Backshift

Bxt = xt−1

• Differencing of order d

∇dxt = (I − B)dxt

• Power transformations

yt =

{
(xλt − 1)/λ λ > 0

log(xt) λ = 0.
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Trend Model

• Suppose

xt = yt + mt

where (yt) is stationary and (mt) is a deterministic trend.

• Ideology: Remove trend, so that data exhibits steady behavior over

time. Then assume stationarity for estimation and prediction. 5



Detrending Chicken Prices (Example 2.4)
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Parametric Trend Estimation

• Assume a parametric model: mt = f (t;β). Estimate β.

• The detrended series is ŷt = xt − f (t; β̂).

• Examples:

• Polynomial regression

f (t;β) = β0 + β1t + β2t
2 + β3t

3

(recall Example 2.4: chicken prices).

• Periodic regression (period T is known)

f (t;α) = α1 cos(2πt/T ) + α2 sin(2πt/T )

• Hybrid: Polynomial + Periodic

f (t;β, α) = β0 + tβ1 + α1 cos(2πt/T ) + α2 sin(2πt/T ).

• Advantages:

• Gives an accurate estimate when model assumptions are correct.

• Easy to predict future observations.

• Disadvantages:

• Selecting the correct model might be difficult.

• Parametric form might be unrealistic in practice. 7



Differencing

• First order differencing:

ŷt = ∇xt = xt − xt−1

= yt − yt−1 + mt −mt−1

(∇ = 1− B where B is the backshift operator: Bxt = xt−1).

• Definition: Differences of order d are

∇d = (1− B)d

(useful when mt is approximately polynomial).

• Advantage:

• No parameters are estimated.

• Especially useful if data behaves as a random walk (cf. Example 2.6).

• Disadvantage:

• Does not yield an estimate of the stationary process yt .
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Examples

• xt = β0 + tβ1 + yt :

• xt = t2 + yt :

• Prediction:
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Example 2.5: Chicken Prices
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Example 2.5: Detrending and Differencing ACF
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Log and Power Transformations

• Log transformation

yt = log xt .

Applies to non-negative data. Tends to suppress large

fluctuations occurring over portions of the series.

• Generalization: Box-Cox power transformation

yt =

{
(xλt − 1)/λ λ > 0

log(xt) λ = 0.

• Goals:

• Equalize variability over time.

• Improve approximation to normality.

• Improve linearity in predicting based on another series.
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Example 2.7: Daily Views of RBG’s Wikipedia Page
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Smoothing



Motivation: Discovering El-Ninõ Effect in SOI Data
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Smoothing

• Estimating trend mt by a weighted average in a neighborhood:

m̂t =
1

2q + 1

q∑
j=−q

ajxt−j =
1

2q + 1

q∑
j=−q

ajmt−j +
1

2q + 1

q∑
j=−q

ajyt−j

(typically
∑q

j=−q aj = 1, aj ≥ 0)

• Useful in discovering long-term trend and seasonal components.

• In the following examples we smooth SOI and discover the periodic

El-Ninõ effect.
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Moving Average Smoothing (Example 2.11)

mt =
6∑

i=−6

aixt−i

a0 = a±1 = . . . = a±5 = 1/12, and a±6 = 1/24 (“boxcar”).

wgts = c(.5, rep(1,11), .5)/12

soif = filter(soi , sides=2, filter=wgts)

tsplot(soi)

lines(soif , lwd=2, col =4)

par(fig = c(.75, 1, .75, 1), new = TRUE) # the insert

nwgts = c(rep(0,20), wgts , rep (0 ,20))

plot(nwgts , type="l", ylim = c(-.02,.1), xaxt=’n’, yaxt=’n’,

ann=FALSE , main="Smoothed SOI")
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Kernel Method (Example 2.12)

mt =
n∑

i=1

wi (t)xi , wi (t) = K

(
t − i

b

)
/

n∑
j=1

K

(
t − j

b

)
.

In the following K (t) = 1√
2π

exp{−t2/2}.
tsplot(soi)

lines(ksmooth(time(soi), soi , "normal", bandwidth =1), lwd=2, col =4)

par(fig = c(.75, 1, .75, 1), new = TRUE) # the insert

gauss = function(x) { 1/sqrt(2*pi) * exp(-(x^2)/2) }

x = seq(from = -3, to = 3, by = 0.001)

plot(x, gauss(x), type ="l", ylim=c(-.02,.45), xaxt=’n’, yaxt=’n’, ann=FALSE)
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Lowess (Example 2.13)

: Estimate x̂t based on its k-nearest neighbors {xt−k/2, . . . , xt , xt+k/2}.
Set mt = x̂t .

tsplot(soi)

lines(lowess(soi , f=.05) , lwd=2, col=4) # El Nino cycle

lines(lowess(soi), lty=2, lwd=2, col=2) # trend (with default span

# = 2/3 of data)
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Smoothing Splines

• Smoothing Splines: Find f (t) that minimizes

n∑
t=1

(xt − f (t))2 + λ

∫
(f ′′)2dt,

over the class of twice differentiable functions.

• The minimizer f̂ (t) is a piecewise cubic polynomial with knots at

t = 1, . . . , n.

• λ trades-off between fitting the data and roughness of the function

estimate

• λ = 0 leads to mt = xt (no smoothing).

• λ→∞ leads to mt = c + vt.

• Also useful for interpolation when time grid is non-uniform or

when there are missing values.
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Smoothing Splines (Example 2.14)

plot(soi)

lines(smooth.spline(time(soi), soi , spar =.5), lwd=2, col =4)

lines(smooth.spline(time(soi), soi , spar= 1), lty=2, lwd=2, col =2)
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Isotonic Trend Estimation

Estimate monotone trend where m1 ≤ . . . ≤ mn by solving the convex

optimization problem

min
a1,...,an

n∑
t=1

(xt − at)
2 subject to a1 ≤ . . . ≤ an.

• Advantages:

1. Non parametric.

2. No smoothing parameters.

3. Gives estimate also for end-points

• Disadvantages:

• Monotonicity assumption might be too strong.

• No straightforward approach for predicting future values.

• Not helpful if data is already monotone.
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Example: Stock Price of Alphabet Inc.

getSymbols("GOOGL") #GOOGL is the ticker or stock symbol for Alphabet Inc.

tsplot(as.numeric(GOOGL$GOOGL.Close), ylab = "daily prices",

xlab = "Days from 2007 -01 -03 to 2020 -09 -18", type = "l",

main = "Stock prices of Alphabet Inc. (GOOGL) stock")

mu <- isoreg(GOOGL$GOOGL.Close) #Isotronic trend estimation

par(par(mfrow=c(2 ,1)))

tsplot(mu, main = "Isotonic Trend")
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Smoothing one series as a function of another

Recall Example 2.2: Temperature, Mortality and Pollution.

plot(tempr , cmort , xlab="Temperature", ylab="Mortality")

lines(lowess(tempr , cmort), col = 2)
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Recap

• First:

1. Transform data for constant variance.

2. Remove trend components.

3. Remove seasonality/periodic components.

• If the residuals exhibit steady behavior over time, assume

stationarity.

In the next unit we will work with models for stationary data.

Note: in many cases (when the SNR is low), the fitted deterministic

model resulting from steps 1-3 is already useful.
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