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Course Recap
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1. Introduction:

e Examples of time series and time series models

e Theoretical constructs:
e Mean function
e Autocovariance and autocorrelation functions (ACF)
e Cross-covariance and cross-correlation function (CCF)
e Stationarity and joint stationarity
e Sample ACF and CCF, Confidence limits

e Classical Regression:

e LS solution
e t-test for regression parameters
e Competing models, explainable variance, F-test
e Coefficient of determination (R?)
e Periodogram as explainable variance of sinusoids
e Data wrangling, trend models, and data smoothing
e Detrending via a trend model
e Detrending via differencing
e Log and power transformations
e Smoothing (moving average, kernel, loess, smoothing splines)
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2. ARMA Modeling:

e AR and MA

e Causality and invertibility

e Forecasting in ARMA models

e Estimating ARMA parameters (Yule—walker, ML, conditional LS)
¢ ARIMA

o SARIMA

e Model diagnostics (Ljung-Box)

e Regression with autocorrelated errors

e Lagged Regression (using transfer function modeling)

e Volatility models: ARCH and GARCH



List of Topics, Il

3. Spectral Analysis

Periodogram

Spectral density (meaning of the term 'white noise’)

Linear filtering and spectrum

Spectral estimation: smoothing the periodogram
Cross-spectrum and coherency

Frequency-domain regression (coherency, competing models)
Spectral principal components

4. State-space modeling

State-space equations

State estimation (Kalman filter and smoother)
Estimating state-space models (ML and EM)

Seasonal decomposition

State-space models with switching (stochastic volatility)
Bayesian analysis of state-space models



High-Dimensional Data



Dataset |I: traffic

e Occupancy rate (between 0 and 1) of 172 different car lanes of the
San Francisco bay area freeways across time.

e 15 months worth of hourly data.

e Source: California Department of Transportation,
www.pems.dot.ca.gov.

‘ summary (traffic %>} select(id, values, sensor_day, time_on_day))

id values sensor_day time_on_day
Min. 1400000 Min. :0.00000 Min. : 0.00 Min. : 0.0
1st Qu.:400485 1st Qu.:0.02190 1st Qu.: 43.00 1st Qu.: 6.0
Median :400991 Median :0.04638 Median : 86.00 Median :12.0
Mean 1401018 Mean :0.05296 Mean : 86.02 Mean :11.5
3rd Qu.:401580 3rd Qu.:0.07053 3rd Qu.:129.00 3rd Qu.:18.0
Max. 1402090 Max . :1.00000 Max . :172.00 Max . :23.0
hours_from_start
Min. : 1

1st Qu.:1038
Median :2076
Mean 12076
3rd Qu.:3114
Max . 14151



www.pems.dot.ca.gov

Example: traffic by day_ of _week
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Example: traffic by time of day
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Dataset Il: Walmart’s sales

Daily unit sales per product and store:

X is the number of items of product / sold at day t.

e j=1,...,30490: 3049 different products across 10 different stores
= 30490 unique (product_id,store_id)

e t=1,...,1941 ( 5.3 years).

M5 competition: require 28-days-ahead forecast (
https://wuw.kaggle.com/c/mb5-forecasting-accuracy)


https://www.kaggle.com/c/m5-forecasting-accuracy

Walmart’s sales

summary (sales)

id cat_id store_id
FOODS_1_001_CA_1_evaluation: 1 FOODS :14370 CA_1 : 3049
FOODS_1_001_CA_2_evaluation: 1 HOBBIES : 5650 CA_2 : 3049
FOODS_1_001_CA_3_evaluation: 1 HOUSEHOLD : 10470 CA_3 : 3049
FOODS_1_001_CA_4_evaluation: 1 CA_4 : 3049
FOODS_1_001_TX_1_evaluation: 1 TX_1 : 3049
FOODS_1_001_TX_2_evaluation: 1 TX_2 : 3049
(Other) 130484 (Other):12196
state_id d_1 d_2 d_3
CA:12196 Min. : 0.00 Min. : 0.000 Min. : 0.00
TX: 9147 1st Qu.: 0.00 1st Qu.: 0.000 1st Qu.: 0.00
WI: 9147 Median : 0.00 Median 0.000 Median 0.00

Mean : 1.07 Mean : 1.041 Mean : 0.78

3rd Qu.: 0.00 3rd Qu.: 0.000 3rd Qu.: 0.00

Max . :360.00 Max . :436.000 Max . :207.00




sales — Total Sales at a Given Day

Total sales per product (across all stores)
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sales — By Product

Sales of items over time
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Challenges

The standard task is prediction:

yi—ﬁ-m = y:+m(y1:t)'

Prediction can be assisted by regression over exogenous features
series:

y§+m = yi—‘rm(yl:tv Xlit)'

Example: Calendar data

x; = (hour_in_day,,day_of week,,month_in_ year, holiday,) .

Special properties:
e Dependencies between many scalar time series.
e Sparsity.
e Discrete variables.
Notable Techniques
e Dimensionality reduction using principal component analysis.

e Large regression models. Holdout data for validation and testing.
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DeepAR




DeepAR

DeepAR: Probabilistic Forecasting with
Autoregressive Recurrent Networks

David Salinas, Valentin Flunkert, Jan Gasthaus
Amazon Research
Germany
<dsalina, flunkert, gasthaus@amazon.com>

Abstract

Probabilistic forecasting, i.e. estimating the probability distribution of a time se-
ries’ future given its past, is a key enabler for optimizing business processes. In

vatail hucinaccac far avamnla faranactina damand ic rmicial far havina tha riaht

13



DeepAR — Model

e Data:
e (z:) is a vector time series, known for j =1,...,t
e (x;) is a vector time series of covariates, known for all t =1,..., T.

e Goal: Model one-step-ahead posterior (or more) given the past
Pr(zes1|z1:e, x1:7)
e Method: Suppose

Pr(Zt+1|zl:t7 xl:T) =/ (Zt+1|9(ht+1))

where

e /is a likelihood function with parameters 6.
e 0;+ = 0(h; ) depends on the output of a recurrent neural network

h: = h@(htfl, Zr—1, Xt)

(he is a multi-layer recurrent neural network with LSTM cells)
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Likelihood Function — Examples

e Example: Gaussian likelihood

(z=p)?

le(z|p,0) = 2mo?) Y2 27

/,L:,U/(ht) = W;,Lht—i_b//“ 02 :U2(ht) = f(W;.ht+bg)

ap \°
1+ap) ’

e Example: Negative binomial likelihood

Q=

 M(z+3) 1
Ing(zlp, a) = Mz+nrd) <1+au>

p=p(h) = F(W,h+b,),  a=alh)=Ff(w,h;+by).
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Recurrent Neural Networks

e Multilayer recurrent neural network with LSTM cells:
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Model Estimation (training)

e Assume: We have many past+future data instances:

(zi,1:t+1)i:1,...,N7 (Xi,1:T)i:1,.4.,N-

Zit—1 Zit Zit4+1

[ | |
’z(zi,t—% |6t—1) “E(Zi,g|9i,t) Hf(zi,t+1 |6:,64+1) I

network \hi,t—l }—>‘ h;; —" h; 1

X [

inputs Zit—2, Tit—1 | Zit—1,Tit Zity Lit+1

e | og-likelihood
N

L(©) = log /(i e11/0(hi 11 ©))

i=1
e Minimize L(©) using stochastic gradient descent.
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How to generate many training instances?

e Take many length-(t' + 1) windows from available data:

. /
zi,l:p+1:{Zi+17"'7zi+t’}7 ’:17‘~-7t7t~

e Log-Likelihood:

N
L(©) = logl (ziv11|0(hie+1;©))

i=1
Note: Network weights © do not depend on time (likelihood
parameters 6 do depend on time).

e Implicit stationarity assumptions!

18



samples Zit—1 Zit Zit+1
Z e~ L(-]0) N
AY
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AY

1 1
E(zi,tlei,t)\u-e(zi,t+1 |0:,241) |

\

\
network |hi,t—1 I \{ h; I \{ h; i1 |

n n]
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e Sales prediction:

- & ¥ E F OB ¥ OE &
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DeepAR as a non-linear State-Space Model

Observation Equation:
Zy = ,U,(ht) + Vg, R = 0'2(ht).

(linear in hy; state-dependent heteroscedasticity)

State Dynamics:
h: = he (ht—l7zt—1axt) .

(non-linear state-dynamics)

e In essence, the main innovation is a multilayer LSTM modeling of
state-dynamics.

Called-upon comparison: DeepAR vs. a linear state-space model.
Can multilayer LSTM improve over a linear model?
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DeepAR as a non-linear State-Space Model (cont’d)

Advantages (according to the authors):

LagLUD LULLPAILL WU L1assIvaL appIuaLiIue auu VLI Biuval
methods: (i) As the model learns seasonal behavior and
dependencies on given covariates across time series, min-
imal manual feature engineering is needed to capture
complex, group-dependent behavior; (ii) DeepAR makes
probabilistic forecasts in the form of Monte Carlo sam-

ing the scale-free nature (approximately
straight line) present in the ec dataset
(axis labels omitted due to the non-
public nature of the data).

ples that can be used to compute consistent quantile estimates for all sub-ranges in the prediction
horizon; (iii) By learning from similar items, our method is able to provide forecasts for items with
little or no history at all, a case where traditional single-item forecasting methods fail; (vi) Our ap-
proach does not assume Gaussian noise, but can incorporate a wide range of likelihood functions,
allowing the user to choose one that is appropriate for the statistical properties of the data.

In fact:

(1) Main benefit: Model automatically learns complicated connections.

(11) Not a distinguishing feature of DeepAR.

(111) A feature of the state-space/vector formulation.

(1v) Not unique to DeepAR (Generalized linear model formulation).
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VEST

arXiv.org > stat > arXiv:2010.07137

Statistics > Machine Learning

[Submitted on 14 Oct 2020]
VEST: Automatic Feature Engineering for Forecasting
Vitor Cerqueira, Nuno Moniz, Carlos Soares

Time series forecasting is a challenging task with applications in a wide range of domains. Auto-regression is one of the most common
approaches to address these problems. Accordingly, observations are modelled by multiple regression using their past lags as predictor
variables. We i i the ion of g ive processes using statistics which summarise the recent past dynamics of time series.
The result of our research is a novel framework called VEST, designed to perform feature engineering using univariate and numeric time series
automatically. The proposed approach works in three main steps. First, recent observations are mapped onto different representations. Second,
each representation is summarised by statistical functions. Finally, a filter is applied for feature selection. We discovered that combining the
features generated by VEST with auto-regression significantly improves forecasting performance. We provide evidence using 90 time series with

hinh camnlina framianns VECT ic muhlichs auailahla anlina




VEST (Vector Statistics from Time series)

e Map recent observations to many different features.

Use these features for prediction.

Develop a procedure as automatic as possible.

interpretability.

Advantage of feature-based inference over end-to-end approaches:
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VEST - Feature Engineering Workflow

Transform

Si {1,..m} = {Si, 15 . 5 Si,m}
—

e T;; € R9is the j-th transformation of X; (e.g., diff )

e S;j € R% is the j-th summary of X; (e.g., mean, max, ACF)

25



VEST - Transformations

Operation

Table 1: Transform operations used in VEST.

Description

I

The Identity transformation, in which each X is mapped onto itself

SMA

We apply a one-sided simple moving average which can be beneficial to
smooth out spurious fluctuations and highlight the general trend. The
number of periods is equal to the square root of the length of X, rounded
to the nearest unit

DIFF

First differences are applied to transform the original embedding vector
into one without trend. This transformation can help with the modelling
of time series with a strong trend component

DIFF2

Second differences, which is equivalent to applying the DIFF operation
twice to X;. This transformation is useful for describing the curvature of
the data

BC

Box-Cox transformation, for stabilising the variance of the time series. The
transformation parameter is optimised using all the available observations
according to Guerrero [14] (minimizing the coefficient of variation)

SIN

Sine terms of order 1 of the Fourier series. This transformation captures
the seasonality of the time series. We remark that the frequency of the
time series must be available to compute these terms

COSs

Similar and complementary to SIN, COS captures the cosine terms of
order 1 of the Fourier series.

DWT

We apply a 1-level discrete wavelet transform using the Daubechies
wavelet [36], and retrieve the coefficients of the respective detail signal
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VEST — Summary Operations, |

Operation

Table 2: Summary operations used in VEST.

Description

MEAN

Arithmetic mean, which is used to estimate the average level of the vector

MDN

Median: similar to the mean, but more robust to outliers

SD

Standard deviation, as a measure of the overall dispersion in the vector

VAR

Variance of the vector, which also measures dispersion

IQR

Inter-quartile range, which is another measure of dispersion of the data,
but more robust to outliers

RD

Relative Dispersion, which is estimated according to the ratio between
the standard deviation of the vector and the standard deviation of the
differenced vector [46]

Minimum value of the vector

Maximum value of the vector

Last known point of the vector

Skewness of the distribution of the vector, which is a measure of its asym-
metry [46]

KRT

Kurtosis for describing the flatness of the data with respect to a normal
distribution [46]

P05, P95

The 5th and 95th percentiles of the vector

ACC1,
ACC_2

Average (ACC_1) and standard deviation (ACC_2) of the acceleration
of the vector, estimated according to the ratio between the simple moving
average and the exponential moving average of equal period. In our ex-
periments, the period for computing the moving averages was set to the
squared root of the length of the vector, rounded to units
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VEST — Summary Operations, Il

BP

Level of auto-correlation, which is estimated using a Box-Pierce test statis-
tic [4,46]

PACF

Average value of the partial auto-correlation function of the vector up to
10 lags

ACF

Average value of the auto-correlation function of the vector up to 10 lags

LRD1
LRD2

Long-range dependence, estimated using the Hurst exponent approach
with wavelet transform with 1 (LRD1) and 2 moments (LRD2) [46]

SLP

Slope of the vector which describes its overall steepness [39]

NORM

Euclidean norm of the vector, which captures its total energy

NO

Number of outliers, estimated according to the number of observations
above or below 1.5 times the inter-quartile range

AMP

Average amplitude of the fast Fourier transform of the vector

STEP

Binary random variable which denotes the presence of a step change [29].
This statistic detects structural breaks in the data

PEAK T,
PEAK_D

Number of local maxima (PEAK_T) and local minima (PEAK_D) in the
vector [29]. These statistics describe the level of oscillation of the data

oD

Overall direction of the vector, estimated by the difference between the
number of times the vector increases and the number of times the vector
decreases

PVST,
PV_LT

Short-term and long-term variability, respectively, estimated using the
Poincaré plot [5]

MLE

Maximum Lyapunov exponent, which quantifies the chaotic level of a time
series [46]
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VEST - Feature Selection

e Concerns:

e Some features do not provide useful information for forecasting.
e Features may be highly correlated with each other.

e Simple selection rules:

e Remove features with a low number of unique values.
e |f two features are highly correlated, remove one of them.

e More complicated selection rules are available.

29



VEST — Modeling and Evaluation

e Data for fitting: Many variants for combining {X}?_; series with
feature-selected series {Z;}"_;.

e Most successful strategy reported in (Cerqueira et. al. 2020) is
AR+VEST: fit a vector AR to

U, =[X;,Zj].

e Performance evaluation:

e 90 different time series, each with at least 1,000 observations.
e Holdout: 60% training, 20% validation (for parameter optimization),
20% testing.

30



8

6

Avg. Rank
~

2

0

Proportion of probability
e e
g El

e
N
]

0.00

|

AR+VEST AR+BS  VEST  AR+BT AR TBATS  ARIMA  ETS

Result  AR+VESTloses || draw [JJl] AR+VEST wins

VEST AR+BS AR+BT ARIMA

31



The End!

When you finish a course
on time series analysis

= )|
The laws of time are mine= "

Statisticians be like
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