STATS 207: Time Series Analysis Autumn 2020

Lecture 2: Sample ACF and Basic Theoretical Constructs

Dr. Alon Kipnis Slides credit: David Donoho, Dominik Rothenhäusler September 16th 2020 WHITE NOISE

AUTOCOVARIANCE AND AUTOCORRELATION

STATIONARITY

ESTIMATING AUTO- AND CROSSCOVARIANCE

- Home assignment 1 will be posted on Monday 9/21/2020. It is Due two weeks later (Monday 10/5/2020).
- We will announce on Canvas and provide the link as-soon-as the assignment is posted.
- Lecture 1 slides and recording are available on Canvas.
- Syllabus with estimated week numbers for each topic is on Canvas.

Name	Example
White noise	$w_t \sim \mathcal{N}(0,\sigma^2)$
Moving Average	$x_t = (w_{t-1} + w_t + w_{t+1})/3$
Autoregression	$x_t = x_{t-1} - 0.9x_{t-2} + w_t$
Random Walk	$x_t = x_{t-1} + w_t$
Sinusoid in noise	$x_t = 2\cos(2\pi t/50 + 0.6\pi) + w_t$

Recall lowercase notation: For each $t = 0, 1, ..., x_t$, is a random variables.

White Noise

A **Change** to the definitions in lecture 1:

- Definition: (w_t) is white noise if
 - 1. $\mathbb{E}[w_t] = 0$ for all $t = 1, 2, \dots$ (zero mean)
 - 2. $\mathbb{E}[w_t^2] = \sigma_w^2$ for all t = 1, 2, ... (finite and identical variance)
 - 3. $\mathbb{E}[w_s w_t] = 0$, for all $t \neq s$ (pairwise uncorrelated).
- Definition: (w_t) is *iid noise* if it is white noise and if w_1, w_2, \ldots are independent and identically distributed.
- Definition: (w_t) is white Gaussian noise if it is iid noise and w_t ~ N(0, σ²_w).

Gaussian White Noise

- White noise has no varying structure over time.
- For most real time series data white noise is not a good model!
- Standard working pipeline:
 - 1. Transform data
 - 2. Fit model to data
 - $3. \ \mbox{Check}$ whether residuals are white noise

How to check whether white noise is a good model for data?

Data: $x_1, x_2, ..., x_n$.

• Definition: Sample ACF:

$$\hat{\rho}(h) \equiv \frac{\sum_{t=1}^{n-h} (x_t - \bar{x})(x_{t+h} - \bar{x})}{\sum_{t=1}^{n} (x_t - \bar{x})^2}, \quad h = 1, 2, \dots, n-1.$$

• For white noise (from the CLT):

$$\hat{\rho}(h) \stackrel{D}{\rightarrow} \mathcal{N}(0,1),$$

hence,

$$\mathsf{Pr}\left(|\hat{
ho}(h)|>1.96/\sqrt{n}
ight)pprox \mathsf{Pr}\left(|\mathcal{N}(0,1)|>1.96
ight)=0.05.$$

Correlogram: Plot the sample ACF for h = 1, ..., k to check if white noise is a good model for data (R function acf).

Example of Sample ACF of White Noise

 $\overline{7}$

ACF of Speech Data

Example 1.27 in [Shumway & Stoffer]

Series speech

Not a white noise!

Autocovariance and Autocorrelation

Joint random variables

• Definition: Joint CDF

$$F_{t_1,\ldots,t_n}(c_1,\ldots,c_n) = \Pr\left(x_{t_1} \leq c_1,\ldots,x_{t_n} \leq x_n\right)$$

• Example: white Gaussian noise $x_i \stackrel{iid}{\sim} \mathcal{N}(0, 1)$,

$$F_{t_1,\ldots,t_n}(c_1,\ldots,c_n) = \prod_{i=1}^n \phi(c_i), \qquad \phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2} dt$$

• Definition: Marginal distribution function

$$F_t(x) = \Pr(x_t \le x), \quad x \in \mathbb{R}$$

• Definition: Marginal density function

$$f_t(x) = \frac{d}{dx}F_t(x).$$

Mean Function

• Definition: The mean function

$$\mu_{xt} \equiv \mathbb{E}\left[x_t\right] = \int_{-\infty}^{\infty} x_t f_t(x) dx$$

• Example: (w_t) white noise,

$$\mu_{wt} = 0, \quad \forall t.$$

- Properties:
 - Mean is linear:

$$y_t = \mathbf{a} \cdot x_t + \mathbf{b} \cdot y_t \Rightarrow \mu_{yt} = \mathbf{a} \mu_{xt} + \mathbf{b} \mu_{zt}$$

 Warning: μ_{xt} is not the long-run average! Mean at different t can in principle be different.

Example Mean Functions

• Moving Average:
$$x_t = (w_{t-1} + w_t + w_{t+1})/3$$
,

$$\mu_{xt} = \mathbb{E} [x_t] \\ = \mathbb{E} [(w_{t-1} + w_t + w_{t+1})/3] \\ = (\mathbb{E} [w_{t-1}] + \mathbb{E} [w_t] + \mathbb{E} [w_{t+1}])/3 = 0$$

• Random walk with drift: $x_t = \delta \cdot t + \sum_{u=1}^{t} w_u$,

$$\mu_{xt} = \mathbb{E}\left[x_t\right] = \mathbb{E}\left[\delta \cdot t + \sum_{u=1}^t w_u\right] = \mathbb{E}\left[\delta \cdot t\right] + \mathbb{E}\left[\sum_{u=1}^t w_u\right] = \delta \cdot t.$$

• Signal plus noise: $x_t = 2 \cos (2\pi t / 50 + 0.6\pi) + w_t$,

$$\mu_{xt} = 2\cos(2\pi t/50 + 0.6\pi)$$

Autocovariance Function

• Definition:

$$\gamma_x(s,t) \equiv \operatorname{Cov}(x_s,x_y) = \mathbb{E}\left[(x_s - \mu_{xs})(x_t - \mu_{xt})\right]$$

• Example: $w_t \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_w^2)$,

$$\gamma_w(s,t) = egin{cases} \sigma^2 & t=s, \ 0 & t
eq s. \end{cases}$$

• Properties:

•
$$\gamma_x(t,t) = \operatorname{Var}(x_t) = \mathbb{E}\left[(x_t - \mu_{xt})^2\right]$$

• Autocovariance is bilinear:

$$y_t = ax_t + bz_t \Rightarrow \gamma_y(t,t) = a^2 \gamma_x(t,t) + b^2 \gamma_z(t,t)$$

if every x_t and z_t are uncorrelated.

• Cauchy-Schwartz inequality:

$$\gamma_x(s,t) \leq \sqrt{\gamma_x(t,t)\gamma_x(s,s)}$$

 Warning: γ_x(t, t) is not the long-run variance! Variance at different t can in principle be different. • Definition:

$$\rho_{\mathsf{x}}(s,t) \equiv \operatorname{corr}(x_t,x_s) = \frac{\operatorname{Cov}(x_s,x_t)}{\sqrt{\operatorname{Var}(x_t)\operatorname{Var}(x_s)}} = \frac{\gamma_{\mathsf{x}}(s,t)}{\sqrt{\gamma_{\mathsf{x}}(t,t)\gamma_{\mathsf{x}}(s,s)}}.$$

• Example: $w_t \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$,

$$\gamma_w(s,t) = egin{cases} 1 & t=s, \ 0 & t
eq s. \end{cases}$$

- Properties:
 - $\rho_x(t,t) = 1$
 - $-1 \leq \rho_x(s,t) \leq 1$
 - $|\rho_x(s,t)| = 1$ implies perfect linear relationship:

$$x_t = a \cdot x_s + b$$
, for some scalars a , b

Example Autocovariance Functions

• Moving Average: $x_t = (w_{t-1} + w_t + w_{t+1})/3$,

$$\gamma_{\mathsf{x}}(s,t) = \sigma_w^2 egin{cases} 3/9 & t = s, \ 2/9 & |t-s| = 1, \ 1/9 & |t-s| = 2, \ 0 & |t-s| > 2. \end{cases}$$

Note: averaging/filtering introduces correlation.

• Random Walk with drift: $x_t = \delta \cdot t + \sum_{u=1}^{t} w_u$,

$$\gamma_x(s,t)=\min(s,t)\sigma_w^2.$$

• Signal plus noise: $x_t = 2\cos(2\pi t/50 + 0.6\pi) + w_t$,

$$\gamma_{\mathsf{x}}(s,t) = egin{cases} \sigma_w^2 & t = s, \ 0 & t
eq s. \end{cases}$$

Stationarity

Stationarity

- Strict stationarity:
 - Definition: for all t_1, \ldots, t_n and h,

$$\{x_{t_1},\ldots,x_{t_n}\} =_D \{x_{t_1+h},\ldots,x_{t_n+h}\},\$$

namely

$$F_{t_1,\ldots,t_n}(c_1,\ldots,c_n)=F_{t_{1+h},\ldots,t_{n+h}}(c_1,\ldots,c_n).$$

- *stationarity* (aka *weak* stationarity, mean-variance stationarity):
 - Definition: for all t, s,

$$\mu_{xt}=\mu_{xs} \qquad \gamma_x(s,t)=\gamma_x(0,|t-s|).$$

- Strict stationarity implies weak stationarity.
- Notation (abuse of):

$$h = t - s, \qquad \gamma(h) \equiv \gamma(0, |t - s|)$$

Examples of stationarity (or not)

• **YES**: Moving average $x_t = (w_{t-1} + w_t + w_{t+1})/3$,

$$\mu_{xt} = 0, \qquad \gamma_x(s,t) = \sigma_w^2 egin{cases} 3/9 & t = s, \ 2/9 & |t-s| = 1, \ 1/9 & |t-s| = 2, \ 0 & |t-s| > 2. \end{cases}$$

• NO: Random walk with drift $x_t = \delta \cdot t + \sum_{u=1}^t w_u$,

$$\mu_{xt} = \delta \cdot t, \qquad \gamma_x(s,t) = \min(s,t)\sigma_w^2.$$

• NO: Signal plus noise $x_t = 2 \cos (2\pi t / 50 + 0.6\pi) + w_t$,

$$\mu_{xt} = 2\cos(2\pi t/50 + 0.6\pi), \qquad \gamma_x(h) = \begin{cases} \sigma_w^2 & h = 0, \\ 0 & h \neq 0. \end{cases}$$

Joint Stationarity & Cross-Covariance

• Definition: Cross-covariance function :

$$\gamma_{xy}(s,t) \equiv \operatorname{Cov}(x_s,y_t) = \mathbb{E}\left[(x_s - \mu_{xs})(y_t - \mu_{yt})\right].$$

Note: $\gamma_{xx}(s,t) = \gamma_x(s,t)$.

• Definition: x and y are jointly stationary if each is stationary, and

$$\gamma_{xy}(s,t) = \gamma_{xy}(0,s-t)$$

Notation: $\gamma_{xy}(h) = \gamma_{xy}(t+h, t)$.

• Example: $x_t = w_t + w_{t-1}$, $y_t = w_t - w_{t-1}$, (w_t) white noise.

$$\gamma_{xy}(s,t) = \sigma_w^2 egin{cases} 0 & t = s, \ 1 & s - t = 1, \ -1 & s - t = -1, \ 0 & |t - s| \geq 2. \end{cases}$$

Example: Cross-Covariance of Delayed Series

(x_t) is stationary and zero mean. (y_t) is delayed, noisy version of (x_t):

$$y_t = A x_{t-\ell} + w_t,$$

where (w_t) is white noise independent of (x_t) . Then

$$\gamma_{yx}(h) = A \cdot \gamma_x(h-\ell) + \gamma_{wx}(h) = A \cdot \gamma_x(h-\ell)$$

- $\gamma_{yx}(h)$ peaks at $h = \ell$, takes value $A \cdot \gamma_x(0)$.
- The best linear prediction of $y_{t+\ell}$ given x_t is

$$\hat{y}_{t+\ell} = \frac{\gamma_{yx}(\ell)}{\gamma_x(0)} x_t = A x_t.$$

Gaussian Process

 Definition: (x_t) is a Gaussian process if for any {t₁,..., t_n} ⊂ N, (x_{t₁},..., x_{t_n}) has a multivariate normal distribution.

Corollary

Every stationary Gaussian process is strictly stationary.

- Example: Gaussian random walk $x_t = x_{t-1} + w_t$
 - Is it Gaussian? Yes
 - Is it stationary? No
 - How about $y_t = x_{t+h} x_t$, $h \in \mathbb{N}$? Yes

• Definition: (stationary) *linear process* is the output of a linear time-invariant system

$$x_t = \mu + \sum_{h=-\infty}^{\infty} \psi_h w_{t-h}, \quad \sum_{h=-\infty}^{\infty} |\psi_h| < \infty.$$

Theorem (Cramèr)

Every stationary Gaussian process that is indeterministic is a linear process with Gaussian (w_t) .

- Example: Stationary linear processes:
 - White noise
 - Moving average
 - Non-explosive autoregressive
- Example: Non-Gaussian linear process: (Ut) is a sequence of Bernoulli trials (coin tosses H → −1, T → 1).

$$x_t = \mu + \sum_{h=-\infty}^{\infty} \psi_h U_{t-h}$$

 (w_t) is white Gaussian noise.

$$y_t = \begin{cases} w_t & t \text{ is even} \\ \frac{w_{t-1}^2 - \sigma_w^2}{\sqrt{2}} & t \text{ is odd.} \end{cases}$$

Process (y_t) is:

- Pairwise uncorrelated Yes.
- Pairwise independent No.
- Strictly stationary No.
- Weakly stationary Yes.
- Gaussian No.

Estimating Auto- and Crosscovariance

Sample Auto/Cross Covariance/Correlation

• Definition: sample mean

$$\bar{x} \equiv \frac{1}{n} \sum_{t=1}^{n} x_t$$

• Definition: sample autocovariance function

$$\hat{\gamma}_x(h) \equiv \frac{1}{n} \sum_{t=1}^{n-h} (x_{t+h} - \bar{x})(x_t - \bar{x}).$$

• Definition: sample cross-covariance function

$$\hat{\gamma}_{xy}(h) \equiv \frac{1}{n} \sum_{t=1}^{n-h} (x_{t+h} - \bar{x})(y_t - \bar{y}).$$

• Definition: sample cross-correlation function

$$\hat{
ho}_{xy}(h)\equivrac{\hat{\gamma}_{xy}(h)}{\sqrt{\hat{\gamma}_{x}(0)\hat{\gamma}_{y}(0)}}$$

• Warning: mind the difference between *ensemble* averaging (many realizations) and *time* averaging (one realization).

Confidence Limits for Autocovariance

For white noise (w_t) :

• Sample autocorrelation:

$$\operatorname{SE}\left[\hat{
ho}_w(h)\right] \approx rac{1}{\sqrt{n}}.$$

• Sample cross-correlation:

$$\operatorname{SE}\left[\hat{\rho}_{wx}(h)\right] \approx \frac{1}{\sqrt{n}},$$

where (x_t) is independent of (w_t) .

(approximations assume $h \ll n$)

From the CLT (Theorem A.7 and Property P1.1 in [Shumway & Stoffer]): for h > 0,

$$\begin{split} & \Pr\left(|\hat{\rho}_{\sf w}(h)| > 1.96/\sqrt{n}\right) \approx \Pr\left(|\mathcal{N}(0,1)| > 1.96\right) = 0.05.\\ & \Pr\left(|\hat{\rho}_{\sf wx}(h)| > 1.96/\sqrt{n}\right) \approx \Pr\left(|\mathcal{N}(0,1)| > 1.96\right) = 0.05. \end{split}$$

ACF of Speech Data

Example 1.27 in [Shumway & Stoffer]

Series speech

Not a white noise!

ACF/CCF of SOI/Recruitment Data

Example 1.28 in [Shumway & Stoffer]

Multiple Testing Warning

If |\$\hightarrow x(h)\$| > 1.96n^{-1/2} for some h > 0, can we determine that (x_t) is not a white noise?

