
Prophet
Forecasting at Scale
Sean J. Taylor (Lyft)

Ben Letham (Facebook)

Background
• We have many applications that

require forecasts.

• Often even a single metric must
be forecast numerous times (e.g.
for each country)

• Not many people have
forecasting training or experience.

• Not many existing solutions or
tools.

Many applications
Capacity planning

• How many servers, employees, meals, parking
spaces, etc., are we going to need?

Goal setting

• How much would a metric grow by next year if
we did nothing at all?

Anomaly detection

• Is this spike in bug reports due to some actual
problem or because it’s a holiday in Brazil?

Stuff we haven’t thought of yet

• Forecasts can become components in complex
data pipelines.

Pareto principle for forecasting
• Many business applications can be

well handled by a relatively small class
of curves.

• No need to cover complex forecasting
problems which can benefit from most
advanced approaches (e.g. LSTMs).

• Scale to more applications by making
forecasting quick, simple, and
repeatable for human analysts.

• Scale to more users by making the
tool easy to use for beginners with a
path to improve models for experts. Cumulative share of applications

from lowest to highest complexity

Cumulative share
of complexity

Prophet
semi automate forecasting

• find similarities across
forecasting problems

• build a tool that can solve most
of them

• make it easy to use + teach
everyone to use it

• give a path forward to improving
forecasts

Python API

>>> from fbprophet import Prophet

>>> m = Prophet()

>>> m.fit(data)

>>> future =
m.make_future_dataframe(periods=365)

>>> forecast = m.predict(future)

Implementation
• Python and R packages

• CRAN: prophet

• PyPI: fbprophet

• Core procedure implemented in Stan
(a probabilistic programming
language).

• Version 0.1 released Feb 2017

• Version 0.5 released May 2019

• >8000 Github stars

Review of
time series methods

AR and MA models
ε0 ε1 ε2

X1X0 X2

ε0 ε1 ε2

X1X0 X2

ε0 ε1 ε2

X1X0 X2

ε0 ε1 ε2

X1X0 X2

White noise

AR(1) ARMA(1,1)

MA(1)

Exponential smoothing

St = αXt + (1 − α)St−1

Double exponential smoothing

St = αXt + (1 − α)(St−1 + Bt−1)
Bt = β(St − St−1) + (1 − β)Bt−1

Business time series features

• outliers

• multiple
seasonalities

• changes in trends

• abrupt changes

Sequence models

• Problem: parameters don’t
correspond to any human-
interpretable properties of the
time series.

Xt =
p

∑
i=1

αiXt−i +
q

∑
i=1

θqϵt−q + ϵt

ARMA(p,q)

Parameters should capture structure

Additive model for curve fitting

y(t) = piecewise trend(t) +

seasonality(t) +

holiday e↵ects(t) +

i.i.d. noise

Polynomials

• Polynomials are a natural
choice for fitting curves.

• We can control the complexity
of the fit using the degree of
the polynomial.

• But polynomials are terrible at
extrapolation.

Splines

• Splines are piecewise
polynomial curves.

• They can have lower
interpolation error than
polynomials with fewer terms.

Piecewise linear

• The main curve that Prophet
uses is piecewise linear.

• These curves are simple to fit
and tend to extrapolate well.

• The hard part is deciding
which “knots” or changepoints
to use.

Changepoint selection in action
• We generate a grid of potential

changepoints.

• Each changepoint is an opportunity
for the underlying curve to change
its slope.

• Apply a Laplace prior (equivalent to
L1-penalty) to changes to select
simpler curves.

• Smaller prior scales result in fewer
changepoints and less flexible
curves.

Estimating uncertainty

Three sources of uncertainty:

• irreducible noise (!)

• parameter uncertainty (HMC)

• trend forecast uncertainty
(simulation)

Irreducible uncertainty

• Anything Prophet cannot fit is
modeled as mean-zero i.i.d.
random noise.

• This creates tube-shaped
uncertainty in the forecast.

• Large uncertainty indicates the
model has fit the historical
data poorly.

Trend change simulation

• At each date in the forecast we
allow the trend to change.

• The rate of change is
estimated based on how many
changepoints were selected.

• The distribution of changes is
selected based on their
magnitudes.

Tuning
If you run a forecasting
procedure and you don’t like the
forecast what can you?

• Adjust the input data you
supply.

• Manually edit the results in a
spreadsheet.

• Change the parameters you
used for your model.

Changepoint prior scale

• How likely we are to include
changepoints in the model.

• Controls flexibility of the curve.

• Rigid curves: large i.i.d. errors
(tube shaped)

• Flexible curves: large trend
uncertainty (cone shaped)

Seasonality prior scale

• Regularizes the parameters on
the Fourier expansion.

• Overfitting seasonality can also
be controlled by turning off
various types of seasonal
patterns or using fewer Fourier
terms.

Capacities
• Piecewise logistic growth

curves have a capacity
parameter that we do not fit
from data.

• Often we can use obvious
constraints as upper and lower
bounds on forecasts.

• The user can specify the
capacity as a constant or as a
time series.

Takeaways
• Forecasting “at scale” is 25%

technology problem 75% people
problem.

• Prophet is a simple model (with some
tricks) but covers many important use-
cases at Facebook and elsewhere.

• Simple is good! Prophet works robustly
and fails in understandable ways.

• Using curve-fitting with interpretable
parameters allows users to input their
domain knowledge into forecasts.

