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Background
• We have many applications that 

require forecasts.


• Often even a single metric must 
be forecast numerous times (e.g. 
for each country)


• Not many people have 
forecasting training or experience.


• Not many existing solutions or 
tools.





Many applications
Capacity planning 

• How many servers, employees, meals, parking 
spaces, etc., are we going to need?


Goal setting 

• How much would a metric grow by next year if 
we did nothing at all?


Anomaly detection 

• Is this spike in bug reports due to some actual 
problem or because it’s a holiday in Brazil?


Stuff we haven’t thought of yet 

• Forecasts can become components in complex 
data pipelines.



Pareto principle for forecasting
• Many business applications can be 

well handled by a relatively small class 
of curves.


• No need to cover complex forecasting 
problems which can benefit from most 
advanced approaches (e.g. LSTMs).


• Scale to more applications by making 
forecasting quick, simple, and 
repeatable for human analysts.


• Scale to more users by making the 
tool easy to use for beginners with a 
path to improve models for experts. Cumulative share of applications 

from lowest to highest complexity

Cumulative share  
of complexity



Prophet
semi automate forecasting

• find similarities across 
forecasting problems 

• build a tool that can solve most 
of them 

• make it easy to use + teach 
everyone to use it 

• give a path forward to improving 
forecasts



Python API 

>>> from fbprophet import Prophet

>>> m = Prophet()

>>> m.fit(data)

>>> future = 
m.make_future_dataframe(periods=365)

>>> forecast = m.predict(future)

Implementation
• Python and R packages


• CRAN: prophet

• PyPI: fbprophet


• Core procedure implemented in Stan 
(a probabilistic programming 
language).


• Version 0.1 released Feb 2017


• Version 0.5 released May 2019


• >8000 Github stars



Review of  
time series methods



AR and MA models
ε0 ε1 ε2

X1X0 X2

ε0 ε1 ε2

X1X0 X2

ε0 ε1 ε2

X1X0 X2

ε0 ε1 ε2

X1X0 X2

White noise

AR(1) ARMA(1,1)

MA(1)



Exponential smoothing

St = αXt + (1 − α)St−1



Double exponential smoothing

St = αXt + (1 − α)(St−1 + Bt−1)
Bt = β(St − St−1) + (1 − β)Bt−1



Business time series features

• outliers


• multiple 
seasonalities


• changes in trends


• abrupt changes



Sequence models

• Problem: parameters don’t 
correspond to any human-
interpretable properties of the 
time series.

Xt =
p

∑
i=1

αiXt−i +
q

∑
i=1

θqϵt−q + ϵt

ARMA(p,q)



Parameters should capture structure



Additive model for curve fitting

y(t) = piecewise trend(t) +

seasonality(t) +

holiday e↵ects(t) +

i.i.d. noise



Polynomials

• Polynomials are a natural 
choice for fitting curves.


• We can control the complexity 
of the fit using the degree of 
the polynomial.


• But polynomials are terrible at 
extrapolation.



Splines

• Splines are piecewise 
polynomial curves.


• They can have lower 
interpolation error than 
polynomials with fewer terms.



Piecewise linear

• The main curve that Prophet 
uses is piecewise linear.


• These curves are simple to fit 
and tend to extrapolate well.


• The hard part is deciding 
which “knots” or changepoints 
to use.



Changepoint selection in action
• We generate a grid of potential 

changepoints.


• Each changepoint is an opportunity 
for the underlying curve to change 
its slope.


• Apply a Laplace prior (equivalent to 
L1-penalty) to changes to select 
simpler curves.


• Smaller prior scales result in fewer 
changepoints and less flexible 
curves.



Estimating uncertainty

Three sources of uncertainty: 

• irreducible noise (!)


• parameter uncertainty (HMC)


• trend forecast uncertainty 
(simulation)



Irreducible uncertainty

• Anything Prophet cannot fit is 
modeled as mean-zero i.i.d. 
random noise.


• This creates tube-shaped 
uncertainty in the forecast.


• Large uncertainty indicates the 
model has fit the historical 
data poorly.



Trend change simulation

• At each date in the forecast we 
allow the trend to change.


• The rate of change is 
estimated based on how many 
changepoints were selected.


• The distribution of changes is 
selected based on their 
magnitudes.



Tuning
If you run a forecasting 
procedure and you don’t like the 
forecast what can you?


• Adjust the input data you 
supply.


• Manually edit the results in a 
spreadsheet.


• Change the parameters you 
used for your model.



Changepoint prior scale

• How likely we are to include 
changepoints in the model.


• Controls flexibility of the curve.


• Rigid curves: large i.i.d. errors 
(tube shaped)


• Flexible curves: large trend 
uncertainty (cone shaped)



Seasonality prior scale

• Regularizes the parameters on 
the Fourier expansion.


• Overfitting seasonality can also 
be controlled by turning off 
various types of seasonal 
patterns or using fewer Fourier 
terms.



Capacities
• Piecewise logistic growth 

curves have a capacity 
parameter that we do not fit 
from data.


• Often we can use obvious 
constraints as upper and lower 
bounds on forecasts.


• The user can specify the 
capacity as a constant or as a 
time series.



Takeaways
• Forecasting “at scale” is 25% 

technology problem 75% people 
problem.


• Prophet is a simple model (with some 
tricks) but covers many important use-
cases at Facebook and elsewhere.


• Simple is good! Prophet works robustly 
and fails in understandable ways.


• Using curve-fitting with interpretable 
parameters allows users to input their 
domain knowledge into forecasts.


