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Background

 We have many applications that
require forecasts.

e Often even a single metric must
be forecast numerous times (e.g.
for each country)

 Not many people have

forecasting training or experience.

* Not many existing solutions or
tools.
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Many applications

Capacity planning

« How many servers, employees, meals, parking
spaces, etc., are we going to need?

Goal setting

 How much would a metric grow by next year if
we did nothing at all?

Anomaly detection

* |s this spike in bug reports due to some actual
problem or because it’s a holiday in Brazil?

Stuff we haven’t thought of yet

* Forecasts can become components in complex
data pipelines.




Pareto principle for forecasting

 Many business applications can be
well handled by a relatively small class
of curves.

 No need to cover complex forecasting
problems which can benefit from most
advanced approaches (e.g. LSTMs).

Cumulative share

* Scale to more applications by making of complexity

forecasting quick, simple, and
repeatable for human analysts.

* Scale to more users by making the
tool easy to use for beginners with a

path to improve models for experts. Cumulative share of applications
from lowest to highest complexity




Prophet

semi automate forecasting

e find similarities across
forecasting problems

e build a tool that can solve most
of them

* make It easy to use + teach
everyone to use It

e give a path forward to improving
forecasts



Implementation

 Python and R packages

 CRAN: prophet Python API

* PyPlI: tbprophet >>> from fbprophet import Prophet
» Core procedure implemented in Stan >>>m = Prophet()

(a probabilistic programming |

language). >>> m.fit(data)

. >>> future =

* Version 0.1 released Feb 2017 m.make_future_dataframe(periods=365)
* Version 0.5 released May 2019 >>> forecast = m.predict(future)

e >8000 Github stars



Review of
time series methods



AR and MA models




Exponential smoothing
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First Difference

Double exponential smoothing
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Business time series features
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Seguence models

ARMA(p,q)

Simulation: 1
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Parameters should capture structure

Forecasts from ARIMA(3,1,2)
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Additive model for curve fitting

y(t) = piecewise_trend(t) +
seasonality(t) +
holiday _effects(t) +

1.1.d. noise )
.

0
t tk 1

g(t)

F1ac. 1. Curve fitting by segmented straight lines.



Polynomials

Degree: 1

* Polynomials are a natural
choice for fitting curves.

* We can control the complexity
of the fit using the degree of
the polynomial.

* But polynomials are terrible at
extrapolation.



Splines

Knots: 1

e Splines are piecewise
polynomial curves.

yvha

* They can have lower
Interpolation error than
polynomials with fewer terms.

1000



Plecewise linear

Prior Scale: 0.001

* The main curve that Prophet
uses Is piecewise linear.

* These curves are simple to fit
and tend to extrapolate well.

* The hard part is deciding
which “knots™ or changepoints
{0 use.




Changepoint selection in action

Prior Scale: 0.001

* \We generate a grid of potential
changepoints.

 Each changepoint is an opportunity
for the underlying curve to change
Its slope.

* Apply a Laplace prior (equivalent to .
L1-penalty) to changes to select
simpler curves.

 Smaller prior scales result in fewer
changepoints and less flexible
Curves.



Estimating uncertainty

Three sources of uncertainty:

e irreducible noise ()

e parameter uncertainty (HMC)

* trend forecast uncertainty
(simulation)




Irreducible uncertainty

* Anything Prophet cannot fit is
modeled as mean-zero I.1.d.
random noise.

* [his creates tube-shaped
uncertainty in the forecast.

* Large uncertainty indicates the
model has fit the historical
data poorly.



Trend change simulation

Sims: 1

* At each date In the forecast we
allow the trend to change.

* The rate of change is
estimated based on how many
changepoints were selected.

* The distribution of changes is
selected based on their
magnitudes.



Tuning

If you run a forecasting
procedure and you don't like the
forecast what can you?

* Adjust the input data you
supply.

 Manually edit the results in a
spreadsheet.

* Change the parameters you
used for your model.



Changepoint prior scale

Prior Scale: 0.001

* How likely we are to include
changepoints in the model.

* Controls flexibility of the curve.

* Rigid curves: large I.1.d. errors
(tube shaped)

* Flexible curves: large trend
uncertainty (cone shaped)




Seasonality prior scale

Seasonality Prior Scale: 1e-07

* Regularizes the parameters on
the Fourier expansion.

* Overfitting seasonality can also
be controlled by turning off -
various types of seasonal
patterns or using fewer Fourier
terms.

Date



Capacities

* Piecewise logistic growth
curves have a capacity
parameter that we do not fit
from data.

e Often we can use obvious
constraints as upper and lower
bounds on forecasts.

 The user can specity the
capacity as a constant or as a
time series.
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Takeaways

* Forecasting “at scale” is 25%
technology problem 75% people
problem.

* Prophet is a simple model (with some
tricks) but covers many important use-
cases at Facebook and elsewhere.

e Simple is good! Prophet works robustly
and fails in understandable ways.

* Using curve-fitting with interpretable
parameters allows users to input their
domain knowledge into forecasts.

Visually
Inspect

Forecasts

Modeling

Surface
Problems

Forecast
Evaluation



