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Empirical Stock Market Analysis Terms

I Fixed Historical Database of stock returns
n stocks, T days
yt(s) = Pt−Pt−1

Pt−1
return of stock s over period (t − 1, t].

I Portfolio: allocation of capital to stocks πt(s) at time t
Long: πt(s) > 0
Short: πt(s) < 0
Cap: Cap = 1′πt

I Return on investment:

rt+1(πt) = y ′t+1πt
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Signal Functions in White et al.

I S(Yt ;β) ∈ {1, 0,−1}
eg: Invest in Recent Winners

S+(Yt) = sgn(Ave[t−4,t]yu)

eg: Invest in Recent Losers

S−(Yt) = −sgn(Ave[t−4,t]yu)

I Universe of Signal functions

Sk , k = 1, . . . ,K

I Comparison of Signal Predictive Ability to a baseline

fk,t+1 = log[1 + yt+1Sk(Yt ;βk,t)]− log[1 + yt+1S0(Yt ;βk,t)]

Example Benchmarks:
S0 = 1. buy and hold;
S0 ∼ {±1} equiprobable

White 1999, Sullivan, Timmerman, White (200)
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Pseudo-Mathematics and Financial
Charlatanism: The Effects of
Backtest Overfitting on
Out-of-Sample Performance
David H. Bailey, Jonathan M. Borwein,
Marcos López de Prado, and Qiji Jim Zhu

Another thing I must point out is that you cannot
prove a vague theory wrong. […] Also, if the process
of computing the consequences is indefinite, then
with a little skill any experimental result can be
made to look like the expected consequences.

—Richard Feynman [1964]

Introduction
A backtest is a historical simulation of an algo-
rithmic investment strategy. Among other things,
it computes the series of profits and losses that
such strategy would have generated had that al-
gorithm been run over that time period. Popular
performance statistics, such as the Sharpe ratio
or the Information ratio, are used to quantify the
backtested strategy’s return on risk. Investors
typically study those backtest statistics and then
allocate capital to the best performing scheme.

Regarding the measured performance of a
backtested strategy, we have to distinguish between
two very different readings: in-sample (IS) and out-
of-sample (OOS). The IS performance is the one
simulated over the sample used in the design of
the strategy (also known as “learning period” or
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“training set” in the machine-learning literature).
The OOS performance is simulated over a sample
not used in the design of the strategy (a.k.a. “testing
set”). A backtest is realistic when the IS performance
is consistent with the OOS performance.

When an investor receives a promising backtest
from a researcher or portfolio manager, one of
her key problems is to assess how realistic that
simulation is. This is because, given any financial
series, it is relatively simple to overfit an investment
strategy so that it performs well IS.

Overfitting is a concept borrowed from ma-
chine learning and denotes the situation when a
model targets particular observations rather than
a general structure. For example, a researcher
could design a trading system based on some
parameters that target the removal of specific
recommendations that she knows led to losses
IS (a practice known as “data snooping”). After a
few iterations, the researcher will come up with
“optimal parameters”, which profit from features
that are present in that particular sample but may
well be rare in the population.

Recent computational advances allow invest-
ment managers to methodically search through
thousands or even millions of potential options for
a profitable investment strategy. In many instances,
that search involves a pseudo-mathematical ar-
gument which is spuriously validated through a
backtest. For example, consider a time series of
daily prices for a stock X. For every day in the
sample, we can compute one average price of
that stock using the previous m observations x̄m
and another average price using the previous n
observations x̄n, where m < n. A popular invest-
ment strategy called “crossing moving averages”
consists of owning X whenever x̄m > x̄n. Indeed,
since the sample size determines a limited number
of parameter combinations thatm and n can adopt,

458 Notices of the AMS Volume 61, Number 5
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E[maxN]. Figure 2 shows how many years of back-
test length (MinBTL) are needed so that E[maxN]
is fixed at 1. For instance, if only five years of data
are available, no more than forty-five independent
model configurations should be tried or we are
almost guaranteed to produce strategies with an
annualized Sharpe ratio IS of 1 but an expected
Sharpe ratio OOS of zero. Note that Proposition 1
assumed the N trials to be independent, which
leads to a quite conservative estimate. If the trials
performed were not independent, the number of
independent trials N involved could be derived
using a dimension-reduction procedure, such as
Principal Component Analysis.

We will examine this tradeoff between N and
T in greater depth later in the paper without
requiring such a strong assumption, but MinBTL
gives us a first glance at how easy it is to overfit by
merely trying alternative model configurations. As
an approximation, the reader may find it helpful
to remember the upper bound to the minimum
backtest length (in years), MinBTL < 2 ln[N]

E[maxN]
2 .

Of course, a backtest may be overfit even if it is
computed on a sample greater than MinBTL. From
that perspective, MinBTL should be considered
a necessary, nonsufficient condition to avoid
overfitting. We leave to Bailey et al. [1] the derivation
of a more precise measure of backtest overfitting.

Model Complexity
How does the previous result relate to model
complexity? Consider a one-parameter model that
may adopt two possible values (like a switch
that generates a random sequence of trades) on
a sample of T observations. Overfitting will be
difficult, because N = 2. Let’s say that we make
the model more complex by adding four more
parameters so that the total number of parameters
becomes 5, i.e., N = 25 = 32. Having thirty-two
independent sequences of random trades greatly
increases the possibility of overfitting.

While a greater N makes overfitting easier,
it makes perfectly fitting harder. Modern super-
computers can only perform around 250 raw
computations per second, or less than 258 raw
computations per year. Even if a trial could be
reduced to a raw computation, searching N = 2100

will take us 242 supercomputer-years of compu-
tation (assuming a 1 Pflop/s system, capable of
1015 floating-point operations per second). Hence,
a skill-less brute force search is certainly impos-
sible. While it is hard to perfectly fit a complex
skill-less strategy, Proposition 1 shows that there
is no need for that. Without perfectly fitting a
strategy or making it overcomplex, a researcher
can achieve high Sharpe ratios. A relatively simple
strategy with just seven binomial independent para-
meters offersN = 27 = 128 trials, with an expected

Figure 4. Performance IS vs. performance OOS
for one path after introducing strategy selection.

Figure 4 provides a graphical representation of
what happens when we select the random walk
with highest SR IS. The performance of the first
half was optimized IS, and the performance of the
second half is what the investor receives OOS. The
good news is, in the absence of memory, there is
no reason to expect overfitting to induce negative
performance.

maximum Sharpe ratio above 2.6 (see Figure 1).
We suspect, however, that backtested strategies

that significantly beat the market typically rely
on some combination of valid insight, boosted
by some degree of overfitting. Since believing in
such an artificially enhanced high-performance
strategy will often also lead to over leveraging,
such overfitting is still very damaging. Most
Technical Analysis strategies rely on filters, which
are sets of conditions that trigger trading actions,
like the random switches exemplified earlier.
Accordingly, extra caution is warranted to guard
against overfitting in using Technical Analysis
strategies, as well as in complex nonparametric
modeling tools, such as Neural Networks and
Kernel Estimators.

Here is a key concept that investors generally
miss:

A researcher that does not report the num-
ber of trials N used to identify the selected
backtest configuration makes it impossible
to assess the risk of overfitting.

Because N is almost never reported, the
magnitude of overfitting in published backtests is
unknown. It is not hard to overfit a backtest (indeed,
the previous theorem shows that it is hard not to), so
we suspect that a large proportion of backtests pub-
lished in academic journals may be misleading. The

May 2014 Notices of the AMS 463
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Figure 3. Performance IS vs. OOS before
introducing strategy selection.

Figure 3 shows the relation between SR IS (x-
axis) and SR OOS (y-axis) for µ = 0, σ = 1, N =
1000, T = 1000. Because the process follows a
random walk, the scatter plot has a circular shape
centered at the point (0,0). This illustrates the fact
that, in absence of compensation effects, overfitting
the IS performance (x-axis) has no bearing on the
OOS performance (y-axis), which remains around
zero.

(let’s say zero). MinTRL was developed to evaluate
a strategy’s track record (a single realized path,
N = 1). The question we are asking now is different,
because we are interested in the backtest length
needed to avoid selecting a skill-less strategy
among N alternative specifications. In other words,
in this article we are concerned with overfitting
prevention when comparing multiple strategies,
not in evaluating the statistical significance of
a single Sharpe ratio estimate. Next, we will
derive the analogue to MinTRL in the context of
overfitting, which we will call Minimum Backtest
Length (MinBTL), since it specifically addresses the
problem of backtest overfitting.

From (3), ifµ = 0 and y = 1, then ŜR a
-→N (0,1).

Note that because SR = 0, increasing q does not
reduce the variance of the distribution. The proof
of the following proposition is left for the appendix.

Proposition 1. Given a sample of IID random vari-
ables, xn ∼ Z, n = 1, . . . ,N, where Z is the CDF
of the Standard Normal distribution, the expected
maximum of that sample, E[maxN] = E[max{xn}],
can be approximated for a large N as

(4)
E[max

N
] ≈ (1− γ)Z−1

[
1− 1

N

]
+ γZ−1

[
1− 1

N
e−1

]

whereγ ≈ 0.5772156649 . . . is the Euler-Mascheroni
constant and N � 1.

An upper bound to (4) is
√

2 ln[N].3 Figure 1
plots, for various values of N (x-axis), the expected
Sharpe ratio of the optimal strategy IS. For example,
if the researcher tries only N = 10 alternative
configurations of an investment strategy, she is
expected to find a strategy with a Sharpe ratio
IS of 1.57 despite the fact that all strategies are
expected to deliver a Sharpe ratio of zero OOS
(including the “optimal” one selected IS).

Proposition 1 has important implications. As
the researcher tries a growing number of strategy
configurations, there will be a nonnull probability
of selecting IS a strategy with null expected
performance OOS. Because the hold-out method
does not take into account the number of trials
attempted before selecting a model, it cannot
assess the representativeness of a backtest.

Minimum Backtest Length (MinBTL)
Let us consider now the case that µ = 0 but y ≠ 1.
Then, we can still apply Proposition 1 by rescaling
the expected maximum by the standard deviation
of the annualized Sharpe ratio, y−1/2. Thus, the
researcher is expected to find an “optimal” strategy
with an IS annualized Sharpe ratio of
(5)
E[max

N
]

≈y−1/2
(
(1− γ)Z−1

[
1− 1

N

]
+γZ−1

[
1− 1

N
e−1

])
.

Equation (5) says that the more independent the
configurations a researcher tries (N), the more
likely she is to overfit, and therefore the higher the
acceptance threshold should be for the backtested
result to be trusted. This situation can be partially
mitigated by increasing the sample size (y). By
solving (5) for y , we obtain the following statement.

Theorem 2. The Minimum Backtest Length
(MinBTL, in years) needed to avoid selecting a
strategy with an IS Sharpe ratio of E[maxN]
among N independent strategies with an expected
OOS Sharpe ratio of zero is
(6)

MinBTL

≈
 (1−γ)Z−1

[
1− 1

N

]
+γZ−1

[
1− 1

N e
−1
]

E[maxN]

2

<
2 ln[N]

E[maxN]
2 .

Equation (6) tells us that MinBTL must grow
as the researcher tries more independent model
configurations (N) in order to keep constant the
expected maximum Sharpe ratio at a given level

3See Example 3.5.4 of Embrechts et al. [5] for a detailed
treatment of the derivation of upper bounds on the maxi-
mum of a Normal distribution.
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Figure 1. Overfitting a backtest’s results as the
number of trials grows.

Figure 1 provides a graphical representation of
Proposition 1. The blue (dotted) line shows the max-
imum of a particular set of N independent random
numbers, each following a Standard Normal distri-
bution. The black (continuous) line is the expected
value of the maximum of that set of N random
numbers. The red (dashed) line is an upper bound
estimate of that maximum. The implication is that it
is relatively easy to wrongly select a strategy on the
basis of a maximum Sharpe ratio when displayed
IS.

feel sufficiently rewarded in our efforts if at least
this paper succeeded in drawing the attention
of the mathematical community regarding the
widespread proliferation of journal publications,
many of them claiming profitable investment
strategies on the sole basis of IS performance. This
is perhaps understandable in business circles, but
a higher standard is and should be expected from
an academic forum.

We would also like to raise the question of
whether mathematical scientists should continue
to tolerate the proliferation of investment products
that are misleadingly marketed as mathematically
sound. In the recent words of Sir Andrew Wiles,

One has to be aware now that mathematics
can be misused and that we have to protect
its good name. [29]

We encourage the reader to search the Internet for
terms such as “stochastic oscillators”, “Fibonacci
ratios”, “cycles”, “Elliot wave”, “Golden ratio”,
“parabolic SAR”, “pivot point”, “momentum”, and
others in the context of finance. Although such
terms clearly evoke precise mathematical concepts,
in fact in almost all cases their usage is scientifically
unsound.

Historically, scientists have led the way in ex-
posing those who utilize pseudoscience to extract
a commercial benefit. As early as the eighteenth
century, physicists exposed the nonsense of as-
trologers. Yet mathematicians in the twenty-first
century have remained disappointingly silent with
regard to those in the investment community who,
knowingly or not, misuse mathematical techniques
such as probability theory, statistics, and stochas-
tic calculus. Our silence is consent, making us
accomplices in these abuses.

The rest of our study is organized as follows:
The section “Backtest Overfitting” introduces the
problem in a more formal way. The section
“Minimum Backtest Length (MinBTL)” defines the
concept of Minimum Backtest Length (MinBTL).
The section “Model Complexity” argues how model
complexity leads to backtest overfitting. The section
“Overfitting in Absence of Compensation Effects”
analyzes overfitting in the absence of compensation
effects. The section “Overfitting in Presence of
Compensation Effects” studies overfitting in the
presence of compensation effects. The section
“Is Backtest Overfitting a Fraud?” exposes how
backtest overfitting can be used to commit fraud.
The section “A Practical Application” presents
a typical example of backtest overfitting. The
section “Conclusions” lists our conclusions. The
mathematical appendices supply proofs of the
propositions presented throughout the paper.

Backtest Overfitting
The design of an investment strategy usually
begins with a prior or belief that a certain pattern
may help forecast the future value of a financial
variable. For example, if a researcher recognizes a
lead-lag effect between various tenor bonds in a
yield curve, she could design a strategy that bets on
a reversion towards equilibrium values. This model
might take the form of a cointegration equation,
a vector-error correction model, or a system of
stochastic differential equations, just to name a
few. The number of possible model configurations
(or trials) is enormous, and naturally the researcher
would like to select the one that maximizes the
performance of the strategy. Practitioners often rely
on historical simulations (also called backtests) to
discover the optimal specification of an investment
strategy. The researcher will evaluate, among
other variables, what are the optimal sample sizes,
signal update frequency, entry and profit-taking
thresholds, risk sizing, stop losses, maximum
holding periods, etc.

The Sharpe ratio is a statistic that evaluates an
investment manager’s or strategy’s performance on
the basis of a sample of past returns. It is defined as
the ratio between average excess returns (in excess
of the rate of return paid by a risk-free asset, such as
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Calendar Rules in Sullivan, Timmerman, White (1998)

October. This is one of the peculiarly dangerous months to speculate in stocks. The others are
July, January September, April, November, May, March, June, December, August and February.

Mark Twain (1894)

I January Effect
Haugen, Robert A., and Josef Lakonishok. The incredible January effect: the stock market’s unsolved
mystery. Dow Jones-Irwin, 1987.

I Monday Effect
Wang, Ko, Yuming Li, and John Erickson. ”A new look at the Monday effect.” The Journal of Finance
52.5 (1997): 2171-2186.
Mehdian, Seyed, and Mark J. Perry. ”The reversal of the Monday effect: new evidence from US equity
markets.” Journal of Business Finance & Accounting 28.7?8 (2001): 1043-1065.
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Calendar Rules in Sullivan, Timmerman, White (1998), 2

Full Universe: 9452 Different Calendar Rules
Reduced Universe: 244 rules

I Day of the week. {−1, 0, 1}5
excluding fixed (e.g. 15, −15, 05)

I Week of the Month: {−1, 0, 1}4 excluding fixed

I Month of the Year: {−1, 0, 1}12 excluding fixed

I SemiMonth: {−1, 0, 1}2 every month; also {−1, 1} in month i

I Holidays: pre-, post-, normal; {−1, 0, 1} on pre- × {−1, 0, 1}
on post- ; exclude fixed rules

I End of December

I Turn-of-the-month
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Hypothesis to be tested

No Calendar Rule better than baseline

H0 : max
k=1,...,K

E (fk) ≤ 0

Empirical Returns
f̄k = Ave1≤t≤T fk,t

Stationary Bootstrap: Romano and Politis 1994

V ∗b =
√
T max

k=1,...,K
f̄ ∗bk

Empirical Sharpe Ratio

S̄Rk =
Ave1≤t≤T fk,t
SD1≤t≤T fk,t

U∗b = max
k=1,...,K

S̄R
∗b
k
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Best Calendar Rule Performance, Full Universe
Dangers of Data-Driven Inference

- 38 -

Table II

Performance of the Best Calendar Rules under the Mean Return Criterion

This table presents the performance results of the best calendar rule, chosen with respect to the mean return

criterion, in each of the sample periods, for the full universe of 9,452 calendar rules.  The table reports the

annualized mean return for the benchmark model and the best performing model, along with White’s

Reality Check P-value and the nominal P-value (i.e., that which results from applying the Reality Check

methodology to the best trading rule only, thereby ignoring the effects of the data-snooping).

Sample Benchmark Model Nominal White's
Return Return P -value P -value

Jan 1897 - Dec 1910 4.17 9.40 0.028 0.617

Jan 1911 - Dec 1924 2.43 6.05 0.089 0.739

Jan 1925 - Dec 1938 1.51 13.22 0.065 0.367

Jan 1939 - May 1952 3.42 8.01 0.048 0.481

June 1952 - Dec 1963 9.21 17.38 0.000 0.216

Jan 1964 - Dec 1975 0.93 10.88 0.000 0.241

Jan 1976 - May 1986 7.56 10.61 0.090 0.915

Jan 1897 - May 1986 3.88 8.50 0.000 0.196

Jan 1897 - Dec 1996 4.63 8.66 0.000 0.243

June 1986 - Dec 1996 11.61 15.23 0.117 0.874

S&P 500 Futures
(Jan 1983 - Dec 1996)

8.54 10.33 0.297 0.992

Out-of-Sample

Full Universe Best Model:  Mean Return Criterion
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Best Calendar Rules, Full Universe
Dangers of Data-Driven Inference

- 37 -

Table I

Best Calendar Rules under the Mean Return Criterion

This table reports the historically best-performing calendar rule, chosen with respect to the mean return

criterion, in each sample period for the full universe of 9,452 calendar rules.

Sample Full Universe Best Model:  Mean Return Criterion

Jan 1897 - Dec 1910
Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 0, 1, 0, 0, 0, 1, 
1, 0, 1, 1, 1

Jan 1911 - Dec 1924
Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 0, 1, 1, 1, 0, 0, 
1, 1, 1, 0, 1

Jan 1925 - Dec 1938 Day of the Week -- m, t, w, th, f = -1, 0, 0, 0, 0

Jan 1939 - May 1952
Turn of Month -- -4, -3, -2, -1, 1, 2, 3, 4, otherwise = 0, 0, 0, 0, 0, 
0, 0, 1, 1

June 1952 - Dec 1963 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1964 - Dec 1975 Day of the Week -- m, t, w, th, f = 0, 0, 1, 1, 1

Jan 1976 - May 1986
Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 0, 1, 1, 0, 1, 1, 
1, 0, 0, 1, 1

Jan 1897 - May 1986 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1897 - Dec 1996 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

June 1986 - Dec 1996 Week of the Month -- 1, 2, 3, 4, 5 = 1, 1, 1, 0, 1

S&P 500 Futures
(Jan 1983 - Dec 1996)

Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 1, 1, 1, 1, 1, 1, 
1, 0, 0, 1, 1

Out-of-Sample
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Best Calendar Rule Performance, Reduced Universe

Dangers of Data-Driven Inference

- 42 -

Table VI

Performance of the Best Calendar Rules, in the Reduced Universe, under the Mean
Return Criterion

This table presents the performance results of the best calendar rule, chosen with respect to the mean return

criterion, in each of the sample periods, for the reduced universe of 244 calendar rules.  The table reports

the annualized mean return for the benchmark model and the best performing model, along with White’s

Reality Check P-value and the nominal P-value (i.e., that which results from applying the Reality Check

methodology to the best trading rule only, thereby ignoring the effects of the data-snooping).

Sample Benchmark Model Nominal White's
Return Return P -value P -value

Jan 1897 - Dec 1910 4.17 7.60 0.000 0.553

Jan 1911 - Dec 1924 2.43 4.86 0.115 0.687

Jan 1925 - Dec 1938 1.51 13.22 0.065 0.270

Jan 1939 - May 1952 3.42 7.60 0.062 0.349

June 1952 - Dec 1963 9.21 17.38 0.000 0.170

Jan 1964 - Dec 1975 0.93 9.79 0.000 0.211

Jan 1976 - May 1986 7.56 9.32 0.048 0.906

Jan 1897 - May 1986 3.88 8.50 0.000 0.119

Jan 1897 - Dec 1996 4.63 8.66 0.000 0.167

June 1986 - Dec 1996 11.61 15.23 0.117 0.600

S&P 500 Futures
(Jan 1983 - Dec 1996)

8.54 10.20 0.299 0.913

Out-of-Sample

Reduced Universe Best Model:  Mean Return Criterion
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Best Calendar Rules, Reduced Universe
Dangers of Data-Driven Inference

- 41 -

Table V

Best Calendar Rules, in the Reduced Universe, under the Mean Return Criterion

This table reports the historically best-performing calendar rule, chosen with respect to the mean return

criterion, in each sample period for the reduced universe of 244 calendar rules.

Sample Reduced Universe Best Model:  Mean Return Criterion

Jan 1897 - Dec 1910
Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 1, 1, 1, 1, 1, 1, 
1, 0, 1, 1, 1

Jan 1911 - Dec 1924
Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 0, 1

Jan 1925 - Dec 1938 Day of the Week -- m, t, w, th, f = -1, 0, 0, 0, 0

Jan 1939 - May 1952
Turn of Month -- -4, -3, -2, -1, 1, 2, 3, 4, otherwise = 1, 1, 1, 1, 1, 
1, 1, 1, 0

June 1952 - Dec 1963 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1964 - Dec 1975 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1976 - May 1986 Semi Month -- second half of October, otherwise = 0, 1

Jan 1897 - May 1986 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1897 - Dec 1996 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

June 1986 - Dec 1996 Week of the Month -- 1, 2, 3, 4, 5 = 1, 1, 1, 0, 1

S&P 500 Futures
(Jan 1983 - Dec 1996)

Week of the Month -- 1, 2, 3, 4, 5 = 1, 1, 1, 0, 1

Out-of-Sample
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Sullivan, Timmerman, White (1999)

THE JOURNAL OF FINANCE * VOL. LIV, NO. 5 * OCTOBER 1999 

Data-Snooping, Technical Trading Rule 
Performance, and the Bootstrap 

RYAN SULLIVAN, ALLAN TIMMERMANN, 
and HALBERT WHITE* 

ABSTRACT 

In this paper we utilize White's Reality Check bootstrap methodology (White (1999)) 
to evaluate simple technical trading rules while quantifying the data-snooping bias 
and fully adjusting for its effect in the context of the full universe from which the 
trading rules were drawn. Hence, for the first time, the paper presents a compre- 
hensive test of performance across all technical trading rules examined. We con- 
sider the study of Brock, Lakonishok, and LeBaron (1992), expand their universe 
of 26 trading rules, apply the rules to 100 years of daily data on the Dow Jones 
Industrial Average, and determine the effects of data-snooping. 

TECHNICAL TRADING RULES HAVE BEEN USED in financial markets for more than a 
century. Numerous studies have been performed to determine whether such 
rules can be employed to provide superior investing performance.' By and 
large, recent academic literature suggests that technical trading rules are 
capable of producing valuable economic signals. In perhaps the most com- 
prehensive recent study of technical trading rules using 90 years of daily 
stock prices, Brock, Lakonishok, and LeBaron (1992) (BLL, hereafter) find 
that 26 technical trading rules applied to the Dow Jones Industrial Average 
(DJIA) significantly outperform a benchmark of holding cash. Their findings 
are especially strong because every one of the trading rules they consider is 
capable of beating the benchmark. When taken at face value, these results 
indicate either that the stock market is not efficient even in the weak form-a 
conclusion which, if found to be robust, will go against most researchers' 
prior beliefs-or that risk premia display considerable variation even over 
very short periods of time (i.e., at the daily interval). 

An important issue generally encountered, but rarely directly addressed 
when evaluating technical trading rules, is data-snooping. Data-snooping 

* Sullivan is with Economic Analysis LLC; Timmermann is with the University of California, 
San Diego and the Financial Markets Group, London School of Economics; and White is with 
the University of California, San Diego. We thank an anonymous referee, the editor (Ren6 
Stulz), and our discussant at the Western Finance Association meetings (David Chapman) for 
many useful comments on the paper. The authors are grateful to NeuralNet R&D Associates of 
San Diego, California for making available its proprietary (patent pending) Reality Check soft- 
ware algorithms. 

1 See, for example, Brock, Lakonishok, and LeBaron (1992), Fama and Blume (1966), Kauf- 
man (1987), Levich and Thomas (1993), Neftci (1991), Osler and Chang (1995), Sweeney (1988), 
Taylor (1992, 1994). 

1647 

David Donoho Guest Lecture, Stat 207, Fall 2020



Technical Analysis

David Donoho Guest Lecture, Stat 207, Fall 2020



Technical Rules in Sullivan, Timmerman, White (1999), A

Data-Snooping and Technical Thading Rule Performance 1655 

universe, a trading rule must have been in use in a substantial part of the 
sample period. This requirement is important for the economic interpreta- 
tion of our results. Only if the trading rules under consideration are known 
during the sample would the existence of outperforming trading rules seem 
to have consequences for weak-form market efficiency or variations in ex 
ante risk premia.9 For this reason, we make a point of referring to sources 
that quote the use of the various trading rules under consideration. 

The trading rules employed in this paper are drawn from previous academic 
studies and the technical analysis literature. Included are filter rules, moving 
averages, support and resistance, channel breakouts, and on-balance volume 
averages. We briefly describe each of these types of rules. Appendix A provides 
the parameterizations of the 7,846 trading rules used to create the complete 
universe. Few of the original sources for the technical trading rules report their 
preferred choice of parameter values, so we simply choose a wide range of pa- 
rameterizations to span the sorts of models investors may have considered 
through time. Of course, our list of trading rules does not completely exhaust 
the set of rules that were considered historically. Nevertheless, our list of rules 
is vastly larger than those compiled in previous studies, and we include the 
most important types of trading rules that can be parsimoniously parameter- 
ized and that do not rely on "subjective" judgments. 

The notation used in the following description corresponds to that on trad- 
ing rule parameters used in Appendix A. 

A. Filter Rules 

Filter rules are used in Alexander (1961) to assess the efficiency of stock 
price movements. Fama and Blume (1966) explain the standard filter rule: 

An x per cent filter is defined as follows: If the daily closing price of a 
particular security moves up at least x per cent, buy and hold the se- 
curity until its price moves down at least x per cent from a subsequent 
high, at which time simultaneously sell and go short. The short position 
is maintained until the daily closing price rises at least x per cent above 
a subsequent low at which time one covers and buys. Moves less than x 
per cent in either direction are ignored. (p. 227) 

The first item of consideration is how to define subsequent lows and highs. 
We will do this in two ways. As the above excerpt suggests, a subsequent 
high is the highest closing price achieved while holding a particular long 
position. Likewise, a subsequent low is the lowest closing price achieved 
while holding a particular short position. Alternatively, a low (high) can be 

9 Suppose that some technical trading rules can be found that unambiguously outperform 
the benchmark over the sample period, but that these are based on technology (e.g., neural 
networks) that only became available after the end of the sample. Since the technique used was 
not available to investors during the sample period, we do not believe that such evidence would 
contradict weak-form market efficiency. 
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defined as the most recent closing price that is less (greater) than the e 
previous closing prices. Next, we will expand the universe of filter rules by 
allowing a neutral position to be imposed. This is accomplished by liquidat- 
ing a long position when the price decreases y percent from the previous 
high, and covering a short position when the price increases y percent from 
the previous low. Following BLL, we also consider holding a given long or 
short position for a prespecified number of days, c, effectively ignoring all 
other signals generated during that time. 

B. Moving Averages 

Moving average cross-over rules, highlighted in BLL, are among the most 
popular and common trading rules discussed in the technical analysis liter- 
ature. The standard moving average rule, which utilizes the price line and 
the moving average of price, generates signals as explained in Gartley (1935): 

In an uptrend, long commitments are retained as long as the price trend 
remains above the moving average. Thus, when the price trend reaches 
a top, and turns downward, the downside penetration of the moving 
average is regarded as a sell signal.... Similarly, in a downtrend, short 
positions are held as long as the price trend remains below the moving 
average. Thus, when the price trend reaches a bottom, and turns up- 
ward, the upside penetration of the moving average is regarded as a buy 
signal. (p. 256) 

There are numerous variations and modifications of this rule. We examine 
several of these. For example, more than one moving average (MA) can be 
used to generate trading signals. Buy and sell signals can be generated by 
crossovers of a slow moving average by a fast moving average, where a slow 
MA is calculated over a greater number of days than the fast MA.10 

There are two types of "filters" we impose on the moving average rules. 
The filters are said to assist in filtering out false trading signals (i.e., those 
signals that would result in losses). The fixed percentage band filter re- 
quires the buy or sell signal to exceed the moving average by a fixed multi- 
plicative amount, b. The time delay filter requires the buy or sell signal to 
remain valid for a prespecified number of days, d, before action is taken. 
Note that only one filter is imposed at a given time. Once again, we consider 
holding a given long or short position for a prespecified number of days, c. 

C. Support and Resistance 

The notion of support and resistance is discussed as early as in Wyckoff 
(1910) and is tested in BLL under the title of "trading range break." A simple 
trading rule based on the notion of support and resistance (S&R) is to buy 

10 The moving average for a particular day is calculated as the arithmetic average of prices 
over the previous n days, including the current day. Thus, a fast moving average has a smaller 
value of n than a slow moving average. 
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defined as the most recent closing price that is less (greater) than the e 
previous closing prices. Next, we will expand the universe of filter rules by 
allowing a neutral position to be imposed. This is accomplished by liquidat- 
ing a long position when the price decreases y percent from the previous 
high, and covering a short position when the price increases y percent from 
the previous low. Following BLL, we also consider holding a given long or 
short position for a prespecified number of days, c, effectively ignoring all 
other signals generated during that time. 

B. Moving Averages 

Moving average cross-over rules, highlighted in BLL, are among the most 
popular and common trading rules discussed in the technical analysis liter- 
ature. The standard moving average rule, which utilizes the price line and 
the moving average of price, generates signals as explained in Gartley (1935): 

In an uptrend, long commitments are retained as long as the price trend 
remains above the moving average. Thus, when the price trend reaches 
a top, and turns downward, the downside penetration of the moving 
average is regarded as a sell signal.... Similarly, in a downtrend, short 
positions are held as long as the price trend remains below the moving 
average. Thus, when the price trend reaches a bottom, and turns up- 
ward, the upside penetration of the moving average is regarded as a buy 
signal. (p. 256) 

There are numerous variations and modifications of this rule. We examine 
several of these. For example, more than one moving average (MA) can be 
used to generate trading signals. Buy and sell signals can be generated by 
crossovers of a slow moving average by a fast moving average, where a slow 
MA is calculated over a greater number of days than the fast MA.10 

There are two types of "filters" we impose on the moving average rules. 
The filters are said to assist in filtering out false trading signals (i.e., those 
signals that would result in losses). The fixed percentage band filter re- 
quires the buy or sell signal to exceed the moving average by a fixed multi- 
plicative amount, b. The time delay filter requires the buy or sell signal to 
remain valid for a prespecified number of days, d, before action is taken. 
Note that only one filter is imposed at a given time. Once again, we consider 
holding a given long or short position for a prespecified number of days, c. 

C. Support and Resistance 

The notion of support and resistance is discussed as early as in Wyckoff 
(1910) and is tested in BLL under the title of "trading range break." A simple 
trading rule based on the notion of support and resistance (S&R) is to buy 

10 The moving average for a particular day is calculated as the arithmetic average of prices 
over the previous n days, including the current day. Thus, a fast moving average has a smaller 
value of n than a slow moving average. 
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defined as the most recent closing price that is less (greater) than the e 
previous closing prices. Next, we will expand the universe of filter rules by 
allowing a neutral position to be imposed. This is accomplished by liquidat- 
ing a long position when the price decreases y percent from the previous 
high, and covering a short position when the price increases y percent from 
the previous low. Following BLL, we also consider holding a given long or 
short position for a prespecified number of days, c, effectively ignoring all 
other signals generated during that time. 

B. Moving Averages 

Moving average cross-over rules, highlighted in BLL, are among the most 
popular and common trading rules discussed in the technical analysis liter- 
ature. The standard moving average rule, which utilizes the price line and 
the moving average of price, generates signals as explained in Gartley (1935): 

In an uptrend, long commitments are retained as long as the price trend 
remains above the moving average. Thus, when the price trend reaches 
a top, and turns downward, the downside penetration of the moving 
average is regarded as a sell signal.... Similarly, in a downtrend, short 
positions are held as long as the price trend remains below the moving 
average. Thus, when the price trend reaches a bottom, and turns up- 
ward, the upside penetration of the moving average is regarded as a buy 
signal. (p. 256) 

There are numerous variations and modifications of this rule. We examine 
several of these. For example, more than one moving average (MA) can be 
used to generate trading signals. Buy and sell signals can be generated by 
crossovers of a slow moving average by a fast moving average, where a slow 
MA is calculated over a greater number of days than the fast MA.10 

There are two types of "filters" we impose on the moving average rules. 
The filters are said to assist in filtering out false trading signals (i.e., those 
signals that would result in losses). The fixed percentage band filter re- 
quires the buy or sell signal to exceed the moving average by a fixed multi- 
plicative amount, b. The time delay filter requires the buy or sell signal to 
remain valid for a prespecified number of days, d, before action is taken. 
Note that only one filter is imposed at a given time. Once again, we consider 
holding a given long or short position for a prespecified number of days, c. 

C. Support and Resistance 

The notion of support and resistance is discussed as early as in Wyckoff 
(1910) and is tested in BLL under the title of "trading range break." A simple 
trading rule based on the notion of support and resistance (S&R) is to buy 

10 The moving average for a particular day is calculated as the arithmetic average of prices 
over the previous n days, including the current day. Thus, a fast moving average has a smaller 
value of n than a slow moving average. 
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when the closing price exceeds the maximum price over the previous n days, 
and sell when the closing price is less than the minimum price over the 
previous n days. Rather than base the rules on the maximum (minimum) 
over a prespecified range of days, the S&R trading rules can also be based 
on an alternate definition of local extrema. That is, define a minimum (max- 
imum) to be the most recent closing price that is less (greater) than the e 
previous closing prices. As with the moving average rules, a fixed percentage 
band filter, b, and a time delay filter, d, can be included. Also, positions can 
be held for a prespecified number of days, c. 

D. Channel Breakouts 

A channel (sometimes referred to as a trading range) can be said to occur 
when the high over the previous n days is within x percent of the low over 
the previous n days, not including the current price. Channels have their 
origin in the "line" of Dow Theory which was set forth by Charles Dow around 
the turn of the century.11 The rules we develop for testing the channel break- 
out are to buy when the closing price exceeds the channel, and to sell when 
the price moves below the channel. Long and short positions are held for a 
fixed number of days, c. Additionally, a fixed percentage band, b, can be 
applied to the channel as a filter. 

E. On-Balance Volume Averages 

Technical analysts often rely on volume of transactions data to assist in 
their market-timing efforts. Although volume is generally used as a second- 
ary tool, we include a volume-based indicator trading rule in our universe of 
rules. The on-balance volume (OBV) indicator, popularized in Granville (1963), 
is calculated by keeping a running total of the indicator each day and adding 
the entire amount of daily volume when the closing price increases, and 
subtracting the daily volume when the closing price decreases. We then ap- 
ply a moving average of n days to the OBV indicator, as suggested in Gartley 
(1935). The OBV trading rules employed are the same as for the moving 
average trading rules, except in this case the value of interest is the OBV 
indicator rather than price. 

F Benchmark 

Following BLL, our benchmark trading rule for the mean return perfor- 
mance measure is the "null" system, which is always out of the market. 
Consequently, SO is always zero. An alternative interpretation, also empha- 
sized by BLL (p. 1741), is to regard a long position in the DJIA as the bench- 
mark and superimpose the trading signals on this market index. According 
to this second interpretation a buy signal translates into borrowing money 
at the risk-free interest rate and doubling the investment in the stock index, 
a "neutral" signal translates into simply holding the stock index, and a sell 
signal translates into a zero position in the stock index (i.e., out of the market). 

" Hamilton (1922) and Rhea (1932) explain the Dow line in detail. 
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when the closing price exceeds the maximum price over the previous n days, 
and sell when the closing price is less than the minimum price over the 
previous n days. Rather than base the rules on the maximum (minimum) 
over a prespecified range of days, the S&R trading rules can also be based 
on an alternate definition of local extrema. That is, define a minimum (max- 
imum) to be the most recent closing price that is less (greater) than the e 
previous closing prices. As with the moving average rules, a fixed percentage 
band filter, b, and a time delay filter, d, can be included. Also, positions can 
be held for a prespecified number of days, c. 

D. Channel Breakouts 

A channel (sometimes referred to as a trading range) can be said to occur 
when the high over the previous n days is within x percent of the low over 
the previous n days, not including the current price. Channels have their 
origin in the "line" of Dow Theory which was set forth by Charles Dow around 
the turn of the century.11 The rules we develop for testing the channel break- 
out are to buy when the closing price exceeds the channel, and to sell when 
the price moves below the channel. Long and short positions are held for a 
fixed number of days, c. Additionally, a fixed percentage band, b, can be 
applied to the channel as a filter. 

E. On-Balance Volume Averages 

Technical analysts often rely on volume of transactions data to assist in 
their market-timing efforts. Although volume is generally used as a second- 
ary tool, we include a volume-based indicator trading rule in our universe of 
rules. The on-balance volume (OBV) indicator, popularized in Granville (1963), 
is calculated by keeping a running total of the indicator each day and adding 
the entire amount of daily volume when the closing price increases, and 
subtracting the daily volume when the closing price decreases. We then ap- 
ply a moving average of n days to the OBV indicator, as suggested in Gartley 
(1935). The OBV trading rules employed are the same as for the moving 
average trading rules, except in this case the value of interest is the OBV 
indicator rather than price. 

F Benchmark 

Following BLL, our benchmark trading rule for the mean return perfor- 
mance measure is the "null" system, which is always out of the market. 
Consequently, SO is always zero. An alternative interpretation, also empha- 
sized by BLL (p. 1741), is to regard a long position in the DJIA as the bench- 
mark and superimpose the trading signals on this market index. According 
to this second interpretation a buy signal translates into borrowing money 
at the risk-free interest rate and doubling the investment in the stock index, 
a "neutral" signal translates into simply holding the stock index, and a sell 
signal translates into a zero position in the stock index (i.e., out of the market). 

" Hamilton (1922) and Rhea (1932) explain the Dow line in detail. 
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when the closing price exceeds the maximum price over the previous n days, 
and sell when the closing price is less than the minimum price over the 
previous n days. Rather than base the rules on the maximum (minimum) 
over a prespecified range of days, the S&R trading rules can also be based 
on an alternate definition of local extrema. That is, define a minimum (max- 
imum) to be the most recent closing price that is less (greater) than the e 
previous closing prices. As with the moving average rules, a fixed percentage 
band filter, b, and a time delay filter, d, can be included. Also, positions can 
be held for a prespecified number of days, c. 

D. Channel Breakouts 

A channel (sometimes referred to as a trading range) can be said to occur 
when the high over the previous n days is within x percent of the low over 
the previous n days, not including the current price. Channels have their 
origin in the "line" of Dow Theory which was set forth by Charles Dow around 
the turn of the century.11 The rules we develop for testing the channel break- 
out are to buy when the closing price exceeds the channel, and to sell when 
the price moves below the channel. Long and short positions are held for a 
fixed number of days, c. Additionally, a fixed percentage band, b, can be 
applied to the channel as a filter. 

E. On-Balance Volume Averages 

Technical analysts often rely on volume of transactions data to assist in 
their market-timing efforts. Although volume is generally used as a second- 
ary tool, we include a volume-based indicator trading rule in our universe of 
rules. The on-balance volume (OBV) indicator, popularized in Granville (1963), 
is calculated by keeping a running total of the indicator each day and adding 
the entire amount of daily volume when the closing price increases, and 
subtracting the daily volume when the closing price decreases. We then ap- 
ply a moving average of n days to the OBV indicator, as suggested in Gartley 
(1935). The OBV trading rules employed are the same as for the moving 
average trading rules, except in this case the value of interest is the OBV 
indicator rather than price. 

F Benchmark 

Following BLL, our benchmark trading rule for the mean return perfor- 
mance measure is the "null" system, which is always out of the market. 
Consequently, SO is always zero. An alternative interpretation, also empha- 
sized by BLL (p. 1741), is to regard a long position in the DJIA as the bench- 
mark and superimpose the trading signals on this market index. According 
to this second interpretation a buy signal translates into borrowing money 
at the risk-free interest rate and doubling the investment in the stock index, 
a "neutral" signal translates into simply holding the stock index, and a sell 
signal translates into a zero position in the stock index (i.e., out of the market). 

" Hamilton (1922) and Rhea (1932) explain the Dow line in detail. 
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Figure 1. Span of the Brock, Lakonishok, and LeBaron (1992) universe of trading 
rules versus the full universe of trading rules: Eigenvalues 1 to 200 of the covariance 
matrix of returns. The eigenvalues of the covariance matrix of returns are sorted in descend- 
ing order for the Brock, Lakonishok, and LeBaron (BLL) universe of trading rules (i.e., a 26 x 
26 matrix), and for 500 randomly chosen rules from the full universe of trading rules (i.e., a 
500 x 500 covariance matrix), including the 26 BLL rules. Panel A plots the 10 largest values 
in sorted descending order along the x-axis, where the y-axis measures the eigenvalue. Panel B 
plots eigenvalues 11 to 200, again sorted in descending order. 

mean annualized return on the buy-and-hold strategy is 4.3 percent during 
this same period. In our full universe, the best trading rule chosen by the 
mean return criterion is a standard five-day moving average rule. The av- 
erage annual return resulting from this rule is 17.2 percent. The Reality 
Check p-value is effectively zero (i.e., less than 1/B = 0.002), strongly indi- 

David Donoho Guest Lecture, Stat 207, Fall 2020



Hypothesis to be tested

No Technical Rule better than baseline

H0 : max
k=1,...,K

E (fk) ≤ 0

Empirical Returns
f̄k = Ave1≤t≤T fk,t

Stationary Bootstrap: Romano and Politis 1994

V ∗b =
√
T max

k=1,...,K
f̄ ∗bk

Empirical Sharpe Ratio

S̄Rk =
Ave1≤t≤T fk,t
SD1≤t≤T fk,t

U∗b = max
k=1,...,K

S̄R
∗b
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Table IV 
Technical Trading Rule Summary Statistics: 

100-Year Dow Jones Industrial Average Sample (1897-1996) 
with the Mean Return Criterion 

This table provides summary statistics, White's Reality Check p-value, and the nominal p-value 
for the best-performing rule (the simple five-day moving average), chosen with respect to the 
mean return criterion, and the recursive cumulative wealth rule, over the full 100-year sample 
of the Dow Jones Industrial Average. The nominal p-value results from applying the Reality 
Check methodology to the best trading rule only, thereby ignoring the effects of the data- 
snooping. The cumulative wealth trading rule bases today's signal on the best trading rule as 
of yesterday, according to total accumulated wealth. The recursive cumulative wealth rule is not 
the best trading rule ex post, thus the Reality Check p-value does not apply. 

Cumulative 
Summary Statistics Best Rule Wealth Rule 

Annualized average return 17.2% 14.9% 
Nominal p-value 0.000 0.000 
White's Reality Check p-value 0.000 n/a 
Total number of trades 6,310 6,160 
Number of winning trades 2,501 2,476 
Number of losing trades 3,809 3,684 
Average number of days per trade 4.3 4.2 
Average return per trade 0.29% 0.26% 

Number of long trades 3,155 3,103 
Number of long winning trades 1,389 1,372 
Number of long losing trades 1,766 1,731 
Average number of days per long trade 4.7 4.6 
Average return per long trade 0.39% 0.35% 

Number of short trades 3,155 3,057 
Number of short winning trades 1,112 1,104 
Number of short losing trades 2,043 1,953 
Average number of days per short trade 3.9 3.8 
Average return per short trade 0.19% 0.16% 

Finally, from July 1954 to 1996, we use the daily Federal funds rate.17 These 
three sets of interest rates are concatenated to form one series, where the 
annualized rates reported are converted into daily rates using the following 
formula: 

In (1 + rann) 
rd 

252 (16) 

17 The Federal funds rate is the cost of borrowing immediately available funds, primarily for 
one day. The effective rate is a weighted average of the reported rates at which different amounts 
of the day's trading occurs through New York brokers. 
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