STATS 207: Time Series Analysis Autumn 2020
 Lecture 12: Spectral Analysis

Dr. Alon Kipnis
October 21st 2020

Genera Info

- HW3 is out. Due Monday $11 / 2 / 2020$.
- Thank you for filling out midquarter feedback.

Spectral Analysis - So Far...

- Periodogram indicates the component of data variance explainable by sinusoids at frequency j.
- The spectral density $f(\omega)$ has a Fourier series representation with coefficients given by the covariance function $\gamma(h)$.
- The spectral density gives typical size of random variable periodogram.
- The spectral density and cross-spectral density play nicely with linear filtering.

Outline

Spectral Density

Linear Filters and Spectral Density
Cross-Spectra
Linear Filters and Cross Spectra
Spectral Estimation
Smoothing the Periodogram
Coherence Estimation
Frequency-Domain Regression
Lagged Regression
Optimum Filtering

Spectral Density

Linear Filters and Spectral Density, I (review)

- Definition: Linear filtering of $\left(x_{t}\right)$ to produce $\left(y_{t}\right)$

$$
y_{t}=\sum_{j=-\infty}^{\infty} a_{j} x_{t-j}, \quad \sum_{j=-\infty}^{\infty}\left|a_{j}\right|<\infty
$$

" $\left(y_{t}\right)$ is the convolution of x_{t} and $\left(a_{t}\right)$ ".

- Definition: $\left(a_{t}\right)_{t \in \mathbb{Z}}$ is the filter's impulse response function.
- Definition: The filter's frequency response function is

$$
A(\omega) \equiv \sum_{j=-\infty}^{\infty} a_{j} e^{-2 \pi i \omega j}
$$

- Property 4.3: If $\left(x_{t}\right)$ has spectrum $f_{x}(\omega)$, then

$$
f_{y}(\omega)=|A(\omega)|^{2} f_{x}(\omega) .
$$

Linear Filters and Spectral Density, II (review)

- Example: Differencing

$$
y_{t}=\nabla x_{t}
$$

- Frequency response

$$
A(\omega)=1-e^{-2 \pi i \omega}
$$

- Relation between spectra

$$
f_{y}(\omega)=|A(\omega)|^{2} f_{x}(\omega)=\left|1-e^{-2 \pi i \omega}\right|^{2} f_{x}(\omega)=2(1-\cos (2 \pi \omega))^{2} f_{x}(\omega)
$$

- Example: x_{t} is white noise with intensity σ^{2} :

$$
f_{y}(\omega)=|A(\omega)|^{2} \sigma^{2}=2(1-\cos (2 \pi \omega))^{2} \sigma^{2}
$$

"Differencing white noise creates a bluish noise."

Linear Filters and Spectral Density, III (review)

- Example: Symmetric Moving Average:

$$
\begin{gathered}
\left(a_{t}\right)=\left(\ldots, 0, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0, \ldots\right) \\
y_{t}=\sum_{j=-\infty}^{\infty} a_{j} x_{t-j}=\frac{1}{5}\left(x_{t-2}+x_{t-1}+x_{t}+x_{t+1}+x_{t+2}\right)
\end{gathered}
$$

- Frequency response:

$$
A(\omega)=\frac{1}{5}[1+2 \cos (2 \pi \omega)+2 \cos (4 \pi \omega)]
$$

x_{t} is white noise of intensity σ^{2} :

$$
f_{y}(\omega)=|A(\omega)|^{2} \sigma^{2}
$$

- "Moving average of white noise creates a pinkish noise."

Cross-Spectra

Cross-Covariance

- Recall: The cross-covariance of two jointly stationary processes $\left(x_{t}\right)$ and $\left(y_{t}\right)$ is

$$
\gamma_{x y}(h)=\operatorname{Cov}\left(x_{t+h}, y_{t}\right) .
$$

- Example: Delay + noise:

$$
y_{t}=a \cdot x_{t-d}+w_{t}, \quad\left(x_{t}\right),\left(w_{t}\right) \text { are stationary and uncorrelated. }
$$

$$
\begin{aligned}
\gamma_{x y}(h) & =\operatorname{Cov}\left(x_{t+h}, a \cdot x_{t-d}+w_{t}\right) \\
& =a \cdot \operatorname{Cov}\left(x_{t+h}, x_{t-d}\right)=a \cdot \gamma_{x}(h+d)
\end{aligned}
$$

Cross-Spectral Density

- Definition: For two jointly stationary processes $\left(x_{t}\right)$ and $\left(y_{t}\right)$, suppose that

$$
\sum_{h=-\infty}^{\infty}\left|\gamma_{x y}(h)\right|<\infty
$$

Then the Fourier series

$$
f_{x y}(\omega)=\sum_{h=-\infty}^{\infty} \gamma_{x y}(h) e^{-2 \pi i \omega h},
$$

defines a continuous complex-valued function on ($-1 / 2,1 / 2$), denoted the cross-spectral density.

- $\gamma_{x y}(h)$ can be recovered from

$$
\gamma_{x y}(h)=\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2 \pi i \omega h} f_{x y}(\omega) d \omega, \quad h=0, \pm 1, \pm 2, \ldots
$$

(Fourier coefficients of $f_{x y}(\omega)$)

Properties of Cross-Spectral Density

- Warning: $f_{x y}(\omega)$ is, in general, complex-valued.
- Real/Imaginary Decomposition:

$$
f_{x y}(\omega)=\overbrace{c_{x y}(\omega)}^{\text {cospectrum }}-i \overbrace{q_{x y}(\omega)}^{\text {quadspectrum }}, \quad \omega \in(-1 / 2,1 / 2) .
$$

- Hermitian Symmetry:

$$
\begin{gathered}
f_{x y}(\omega)=f_{y x}^{*}(\omega), \\
c_{x y}(\omega)=c_{y x}(\omega), \quad q_{x y}(\omega)=-q_{y x}(\omega) .
\end{gathered}
$$

(why?)

Coherence

- Definition: Squared Coherence function

$$
\rho_{x y}^{2}(\omega)=\frac{\left|f_{y x}(\omega)\right|^{2}}{f_{x}(\omega) f_{y}(\omega)}
$$

(note similarity to correlation).

- Range:

$$
0 \leq \rho_{x y}^{2}(\omega) \leq 1
$$

- Interpretation:
- $\rho=1$ implies perfect correlation at frequency ω.
- $\rho=0$ implies uncorrelatedness at frequency ω.
- "If two processes are strongly coherent at ω, we can estimate the sinusiod component of frequency ω of $\left(y_{t}\right)$ by observing $\left(x_{t}\right)$.

Cross-Spectral Density, Example

Delay + noise:

$$
y_{t}=x_{t-d}+w_{t}, \quad\left(w_{t}\right) \text { is uncorrelated with }\left(x_{t}\right) .
$$

- Cross-spectrum:

$$
f_{y x}(\omega)=e^{-2 \pi i d \omega} f_{x}(\omega) .
$$

- Amplitude of cross-spectrum:

$$
\left|f_{y x}(\omega)\right|=\left|f_{x y}(\omega)\right|=\left|f_{x}(\omega)\right|=f_{x}(\omega) .
$$

Cross-Spectral Density, Example (cont'd)

Delay + noise:
$y_{t}=x_{t-d}+v_{t}, \quad\left(v_{t}\right)$ stationary noise process uncorrelated with $\left(x_{t}\right)$.

- Spectral density of $\left(y_{t}\right)$:

$$
f_{y}(\omega)=f_{x}(\omega)+f_{v}(\omega)
$$

- Squared Coherence:

$$
\rho_{x y}^{2}(\omega)=\frac{\left|f_{x y}(\omega)\right|^{2}}{f_{x}(\omega) f_{y}(\omega)}=\frac{\left|f_{x}(\omega)\right|^{2}}{f_{x}(\omega) f_{y}(\omega)}=\frac{f_{x}(\omega)}{f_{x}(\omega)+f_{v}(\omega)}
$$

- Signal-to-Noise Ratio (SNR):

$$
\operatorname{SNR}(\omega) \equiv \frac{f_{x}(\omega)}{f_{v}(\omega)} \geq 0
$$

- Squared Coherence in terms of SNR:

$$
\rho_{x y}^{2}(\omega)=\frac{\operatorname{SNR}(\omega)}{1+\operatorname{SNR}(\omega)} \in[0,1], \quad \omega \in(-1 / 2,1 / 2) .
$$

Linear Filters and Cross Spectra

- Recall: Delay + noise:

$$
y_{t}=x_{t-d}+\text { uncorrelated noise }
$$

Cross-spectrum: $f_{y x}(\omega)=e^{-2 \pi i d \omega} f_{x}(\omega)$

- Extension I: Multiply and delay

$$
y_{t}=a \cdot x_{t-d}
$$

Cross-spectrum: $f_{y x}(\omega)=a \cdot e^{-2 \pi i d \omega} f_{x}(\omega)$

- Extension II: Linear filtering:

$$
y_{t}=\sum_{d=-\infty}^{\infty} a_{d} x_{t-d}, \quad \sum_{t \in \mathbb{Z}}\left|a_{t}\right|<\infty
$$

Cross-spectrum:

$$
f_{y x}(\omega)=\overbrace{\sum_{d=-\infty}^{\infty} a_{d} e^{-2 \pi i d \omega}}^{A(\omega)} f_{x}(\omega)=A(\omega) f_{x}(\omega)
$$

$(A(\omega)$ is the frequency response of the filter).

Spectral Representation of a Vector Stationary Process

- Example 4.20 (and Property 4.18):

Consider a jointly stationary bivariate process $\left(x_{t}, y_{t}\right)$. The autocovariance matrix is

$$
\Gamma(h)=\left(\begin{array}{cc}
\gamma_{x}(h) & \gamma_{x y}(h) \\
\gamma_{y x}(h) & \gamma_{y}(h)
\end{array}\right)
$$

and the spectral matrix is

$$
\boldsymbol{f}(h)=\left(\begin{array}{cc}
f_{x}(h) & f_{x y}(h) \\
f_{y x}(h) & f_{y}(h)
\end{array}\right)
$$

- Note: Hermitian symmetry: $\Gamma^{*}(\omega)=\Gamma(\omega)$.
- Obvious extensions to higher dimensions.

Recap

- Periodogram indicates the component of data variance explainable by sinusoids at frequency j.
- The spectral density $f(\omega)$ has a Fourier series representation with coefficients given by the covariance function $\gamma(h)$.
- The spectral density gives typical size of random variable periodogram.
- The cross-spectral density $f_{x y}(\omega)$ has a Fourier series representation with coefficients given by the cross covariance function $\gamma_{x y}(h)$.
- The spectral density and cross-spectral density play nicely with linear filtering.

Next:

- Spectral estimation.
- Frequency domain regression.

Spectral Estimation

Properties of Periodogram (review)

- Let $\left(w_{t}\right)$ be Gaussian white noise. n is odd. Then

$$
I_{n}\left(\omega_{j: n}\right) \stackrel{\text { iid }}{\sim} \operatorname{Exp}\left(\sigma_{w}^{2}\right), \quad 1, \ldots,(n-1) / 2 .
$$

Alternately,

$$
\frac{2 I_{n}(j / n)}{\sigma_{w}^{2}} \stackrel{i i d}{\sim} \chi_{2}^{2}, \quad 1, \ldots,(n-1) / 2
$$

- Periodogram of a Gaussian White Noise is an "Exponential/Chi-squared Noise".

Periodogram of White Noise - Several examples

```
n = 200; freq = (0:(n-1))/n; par(mfrow=c(3,3))
for (i in 1:9) {
    d <- fft(rnorm(n)) / sqrt(n)
    plot(freq, Mod(d)^2, type='0', xlab='frequency',
        main = paste('Realization',i, sep='-'), xlim=(c(0,0.5)))
}
```


Smoothing the Periodogram, I

- $L=2 m+1$ for integer $m>0, L<n / 2$.
- Running average periodogram smoother:

$$
\bar{f}(j / n) \equiv \frac{1}{L} \sum_{k=-m}^{m} I_{n}\left(\frac{j+k}{n}\right), \quad j=1, \ldots,(n-1) / 2
$$

- Interpret indices circularly,

$$
I_{n}(\pm k / n)=I_{n}((n \pm k) / n), \quad k=0, \pm 1, \pm 2, \ldots
$$

- Remark: In practice we use a weighted average rather than a uniform average.

Smoothing the Periodogram, II

- For n odd, set

$$
\omega_{j: n} \equiv \frac{j}{n}, \quad j=1, \ldots, \frac{n-1}{2} .
$$

- If $\left(w_{t}\right)$ is Gaussian white noise,

$$
\frac{2 L \bar{f}\left(\omega_{j: n}\right)}{\sigma_{w}^{2}} \sim \chi_{2 L}^{2}, \quad j=1, \ldots,(n-1) / 2
$$

- Why?
- Periogoram of a GWN is proportional to χ_{2}^{2}.
- $L \bar{f}\left(\omega_{j: n}\right)$ is proportional to the sum of L independent χ_{2}^{2}.
- Sum of L independent χ_{2}^{2} is $\chi_{2 L}^{2}$.

Normal, Exponential, and Chi-squared Distributions

- Definition: Let $Z_{1}, \ldots, Z_{n} \stackrel{i i d}{\sim}(0,1)$. Then

$$
\sum_{i=1}^{n} z_{i}^{2} \sim \chi_{n}^{2}
$$

has a Chi-squared distribution on n degrees of freedom.

- Properties of χ_{n}^{2} :
- Probability density function

$$
f(x ; k)= \begin{cases}\frac{x^{(k / 2)-1} e^{-x / 2}}{2^{k / 2 /[(k / 2)}}, & x \geq 0 ; \\ 0, & \text { otherwise }\end{cases}
$$

($\Gamma(k / 2)$ is the Gamma function)

- $\mathbb{E}\left[\chi_{n}^{2}\right]=n$.
- $\chi_{2}^{2}=\operatorname{Exp}(2)$.

Smoothing the Periodogram, III

- Property: Let $\left(x_{t}\right)$ be Gaussian and stationary with

$$
\sum_{h=-\infty}^{\infty} \sqrt{|h|}|\gamma(h)|<\infty
$$

Then

$$
\frac{2 L \bar{f}\left(\omega_{j: n}\right)}{f_{x}\left(\omega_{j: n}\right)} \stackrel{\text { approx }}{\sim} \chi_{2 L}^{2}, \quad j=1, \ldots,(n-1) / 2 .
$$

- Why?
- $I_{n}\left(\omega_{j: n}\right)$ are approximately independent $f_{x}\left(\omega_{j: n}\right) \chi_{2}^{2} / 2$.
- If $L \ll n, L \bar{f}\left(\omega_{j: n}\right)$ is the sum of L approximately independent $f_{x}\left(\omega_{j: n}\right) \chi_{2}^{2} / 2$.

Spectral Density and Periodogram (review)

- Suppose $\left(x_{t}\right)$ is stationary with absolutely summable $\gamma_{x}(h)$.

$$
f_{x}(\omega)=\lim _{n \rightarrow \infty} \mathbb{E}\left[I_{n}(\lfloor n \omega\rfloor / n)\right], \quad \omega \in(0,1 / 2) .
$$

- Suppose that x_{t} is also a Gaussian process. Then, approximately

$$
I_{n}\left(\omega_{j: n}\right) \stackrel{\text { approx }}{\sim} \operatorname{Exp}\left(f_{x}\left(\omega_{j: n}\right)\right), \quad j=0,1, \ldots, n / 2
$$

Equivalently (Property 4.6),

$$
\frac{2 I_{n}\left(\omega_{j: n}\right)}{f_{x}\left(\omega_{j: n}\right)} \stackrel{\text { approx }}{\sim} \chi_{2}^{2}, \quad j=0,1, \ldots, n / 2 .
$$

- In words: "Spectrum gives typical size of random variable periodogram."

Smoothing the Periodogram, IV

- Define

$$
E_{j, n} \equiv\left\{\frac{2 L \bar{f}\left(\omega_{j: n}\right)}{\chi_{2 L}^{2}\left(1-\frac{\alpha}{2}\right)} \leq f_{x}\left(\omega_{j: n}\right) \leq \frac{2 L \bar{f}\left(\omega_{j: n}\right)}{\chi_{2 L}^{2}\left(\frac{\alpha}{2}\right)}\right\}, \quad \alpha>0 \text { is small. }
$$

- From

$$
\frac{2 L \bar{f}\left(\omega_{j: n}\right)}{f_{x}\left(\omega_{j: n}\right)} \stackrel{a p p r o x}{\sim} \chi_{2 L}^{2}, \quad j=1, \ldots,(n-1) / 2
$$

we have

$$
\operatorname{Pr}\left(E_{j, n}\right) \rightarrow 1-\alpha
$$

" $E_{j, n}$ is an asymptotic $(1-\alpha)$ confidence interval for $f_{x}(\omega)$ ".

Smoothing the Periodogram, V

- Let $\left(x_{t}\right)$ be stationary Gaussian. Set

$$
\begin{array}{r}
C_{j, n} \equiv\left[\log \left(\bar{f}\left(\omega_{j: n}\right)\right)+\log (2 L)-\log \left(\chi_{2 L}^{2}\left(1-\frac{\alpha}{2}\right)\right),\right. \\
\left.\log \left(\bar{f}\left(\omega_{j: n}\right)\right)+\log (2 L) \log \left(\chi_{2 L}^{2}\left(\frac{\alpha}{2}\right)\right)\right] .
\end{array}
$$

- $\operatorname{Pr}\left(\log \left(f_{x}\left(\omega_{j: n}\right)\right) \in C_{j, n}\right) \rightarrow 1-\alpha$. " $C_{j, n}$ is an asymptotic $(1-\alpha)$ confidence interval for $\log \left(f_{x}\left(\omega_{j: n}\right)\right)$."

Example 4.14: Smoothed Periodogram for SOI \& Recruitment

```
soi.ave = mvspec(soi, kernel('daniell',4), log='no')
abline(v=c(.25,1,2,3), lty=2)
soi.ave$bandwidth # = 0.225
```

Series: sol
Smoothed Periodogram

Series: rec
Smoothed Periodogram

Log-Smoothed Periodogram for SOI \& Recruitment

```
soi.ave = mvspec(soi, kernel('daniell',4), log='yes')
abline(v=c(.25,1,2,3), lty=2)
soi. ave$bandwidth # = 0.225
```

Series: sol
Smoothed Periodogram

Series: rec
Smoothed Periodogram

Coherence Estimation, I

- Discrete Fourier Transform:

$$
\begin{array}{ll}
d_{x}(j / n)=\frac{1}{n} \sum_{t=1}^{n} x_{t} e^{-2 \pi i j / n}, & j=1, \ldots, n-1 \\
d_{y}(j / n)=\frac{1}{n} \sum_{t=1}^{n} y_{t} e^{-2 \pi i j / n}, & j=1, \ldots, n-1
\end{array}
$$

- Definition: Cross-periodogram

$$
I_{y x}(\omega)=d_{y}(\omega) d_{x}^{*}(\omega)
$$

Coherence Estimation, II

- Running average cross-periodogram smoother :

$$
\bar{f}_{y x}(j / n) \equiv \frac{1}{L} \sum_{k=-m}^{m} l_{y x}\left(\frac{j+k}{n}\right), \quad j=1, \ldots,(n-1) / 2
$$

where

- $L=2 m+1$ for integer $m>0, L<n / 2$.
- Interpret indices circularly, $I_{y x}(\pm k / n)=l_{y x}((n \pm k) / n)$.
- Squared Coherence estimate (uniform weights):

$$
\bar{\rho}_{x y}^{2}\left(\omega_{j: n}\right)=\bar{\rho}_{y x}^{2}\left(\omega_{j: n}\right)=\frac{\left|\bar{f}_{x y}\left(\omega_{j: n}\right)\right|^{2}}{\bar{f}_{x}\left(\omega_{j: n}\right) \hat{f}_{y}\left(\omega_{j: n}\right)} .
$$

- Property: If $\rho_{y x}(\omega)=0$,

$$
\frac{\bar{\rho}_{y x}^{2}(\omega)}{\left(1-\bar{\rho}_{y x}^{2}(\omega)\right)}(L-1) \stackrel{\text { approx }}{\sim} F_{2 L-1}^{2} .
$$

Used for testing against the null: "no coherence at freq ω ". Warning: multiple testing; see discussion around Eq. 4.63.

Example 4.21 Squared Coherence SOI \& Recruitment

```
sr = mvspec(cbind(soi,rec), kernel("daniell",9),
    plot.type="coh", plot=TRUE)
sr$df
        # df = 35.8625
f = qf(.999, 2, sr$df-2) # f = 8.529792
C = f/(18+f) # C = 0.3188779
abline(h = C)
```

Series: cbind(soi, rec) -- Squared Coherency

The two series are strongly coherent at: Annual Cycle of 12 mo , El-ninõ Cycle 3-7years (peak is at 9years).

Frequency-domain Regression

Lagged Regression Setting

- Lagged regression model

$$
y_{t}=\sum_{r=-\infty}^{\infty} \beta_{r} x_{t-r}+v_{t},
$$

where:

- $\left(v_{t}\right)$ is stationary noise,
- $\left(x_{t}\right)$ is the stationary observed input series (aka predictor or covariate)
- $\left(y_{t}\right)$ is the observed output series.
- Goal: Estimate filter coefficients $\left(\beta_{r}\right)$.
- Example: SOI and Recruitment.
- In Lecture 9 we have used the "transfer function modelling" approach to this setting.

SOI \& Recruitment

Normal Equations

- Write spectral matrix of $\left(x_{t}, y_{t}\right)$:

$$
\boldsymbol{f}(\omega)=\left(\begin{array}{cc}
f_{x}(\omega) & f_{x y}(\omega) \\
f_{y x}(\omega) & f_{y}(\omega)
\end{array}\right)
$$

- Assume that $\left(x_{t}\right)$ and $\left(y_{t}\right)$ have zero means.
- The MSE

$$
\mathrm{MSE}_{t}=\mathbb{E}\left[\left(y_{t}-\sum_{r=-\infty}^{\infty} \beta_{r} x_{t-r}\right)^{2}\right] .
$$

The optimal $\left(\beta_{r}\right)$ satisfies the orthogonality condition

$$
\mathbb{E}\left[\left(y_{t}-\sum_{r=-\infty}^{\infty} \beta_{r} x_{t-r}\right) x_{s+t}\right]=0, \quad \forall s=0, \pm 1, \pm 2, \ldots
$$

- Corollary: The Normal Equations:

$$
\sum_{r=-\infty}^{\infty} \beta_{r} \gamma_{x}(s-r)=\gamma_{y x}(s), \quad s=0, \pm 1, \pm 2, \ldots
$$

A Spectral Approach for Solving the Normal Equations

- The Normal Equations:

$$
\sum_{r=-\infty}^{\infty} \beta_{r} \gamma_{x}(s-r)=\gamma_{y x}(s), \quad s=0, \pm 1, \pm 2, \ldots
$$

- Write the spectral representation of both sides:

$$
\gamma_{y x}(s)=\int_{-\frac{1}{2}}^{\frac{1}{2}} f_{y x}(\omega) e^{2 \pi i \omega s} d \omega,
$$

and

$$
\begin{aligned}
\sum_{r=-\infty}^{\infty} \beta_{r} \gamma_{x}(s-r) & =\int_{-\frac{1}{2}}^{\frac{1}{2}} \sum_{r=-\infty}^{\infty} \beta_{r} f_{x}(\omega) e^{2 \pi i \omega(s-r)} d \omega \\
& =\int_{-\frac{1}{2}}^{\frac{1}{2}} B(\omega) f_{x}(\omega) e^{2 \pi i \omega s} d \omega
\end{aligned}
$$

$B(\omega)$ is the frequency response of the filter $\left(\beta_{r}\right)$.

- Normal Equations in the frequency domain:

$$
B(\omega) f_{x}(\omega)=f_{y x}(\omega), \quad \omega \in[-1 / 2,1 / 2]
$$

Prescription for Lagged Regression:

Step I: The equation $B(\omega) f_{x}(\omega)=f_{y x}(\omega)$ suggests

$$
\hat{B}\left(\omega_{k}\right)=\frac{\hat{f}_{x y}\left(\omega_{k}\right)}{\hat{f}_{x}\left(\omega_{k}\right)}
$$

as the estimator of the Fourier transform of the regression coefficients, over a grid $\omega_{k}=k / M$ with $M \ll n$.
Step II: Assuming that $B(\omega)$ is smooth, use:

$$
\begin{gathered}
\hat{\beta}_{t}=\frac{1}{M} \sum_{k=0}^{M-1} \hat{B}\left(\omega_{k}\right) e^{2 \pi i \omega_{k} t}, \quad t=0, \pm 1, \pm 2, \ldots, \pm(M / 2-1) . \\
\hat{\beta}_{t}=0, \quad|t| \geq M / 2 .
\end{gathered}
$$

- Straightforward extension to vectorial (x_{t}) (Section 7.2).

Example 4.24: SOI and Recruitment

- High coherence suggests a lagged regression relation.

```
LagReg(soi, rec, L=15, M=32, inverse=TRUE, threshold=.01)
```

```
INPUT: soi OUTPUT: rec L = 15 M = 32
```

The coefficients beta(0), beta(1), beta(2) ... beta(M/2-1) are $3.4631412 .0886132 .688139-0.35158290 .3717705-18.47931$-12.2633 $-8.539368-6.984553-4.978238-4.526358 \quad \ldots \quad 1.489903 \quad 3.744727$

```
The positive lags, at which the coefficients are large
in absolute value, and the coefficients themselves, are:
    lag s beta(s)
[1,] 5 -18.479306
[2,] 6 -12.263296
[3,] 7 -8.539368
[4,] 8 -6.984553
```

```
The prediction equation is
```

The prediction equation is
rec(t) = alpha + sum_s[beta(s)*soi(t-s)], where alpha = 65.96584
rec(t) = alpha + sum_s[beta(s)*soi(t-s)], where alpha = 65.96584
MSE = 414.0847

```
MSE = 414.0847
```

- Suggested model:

$$
y_{t}=66-18.5 x_{t-5}-12.3 x_{t-6}-8.5 x_{t-7}-7 x_{t-8}+w_{t}
$$

SOI and Recruitment (cont'd)

coefficients beta(s)

cross-correlations

Output (dotted line) and predicted (by the input) values
based on the impulse-response analysis

Frequency-Domain Representation of the MSE

- Normal Equations in the frequency domain:

$$
B(\omega) f_{x}(\omega)=f_{y x}(\omega), \quad \omega \in[-1 / 2,1 / 2]
$$

- Minimized MSE satisfies

$$
\operatorname{MSE}_{t}=\mathbb{E}\left[\left(y_{t}-\sum_{r=-\infty}^{\infty} \beta_{r} x_{t-r}\right) y_{t}\right]=\gamma_{y}(0)-\sum_{r=-\infty}^{\infty} \beta_{r} \gamma_{x y}(-r),
$$

which is independent of t.

- Implies the frequency-domain representation:

$$
\operatorname{MSE}=\int_{-\frac{1}{2}}^{\frac{1}{2}}\left[f_{y}(\omega)-B(\omega) f_{x y}(\omega)\right] d \omega=\int_{-\frac{1}{2}}^{\frac{1}{2}} f_{y}(\omega)\left[1-\rho_{y x}^{2}(\omega)\right] d \omega
$$

(large coherence leads to small MSE).

Optimum Filtering (Wiener-Kolmogorov Problem)

- Model:

$$
y_{t}=\sum_{r=-\infty}^{\infty} \beta_{r} x_{t-r}+v_{t},
$$

where

- $\left(v_{t}\right)$ is a noise process uncorrelated of $\left(x_{t}\right)$.
- $\left(\beta_{r}\right)$ are known.
- $\left(y_{t}\right)$ is observed. $\left(x_{t}\right)$ is not observed.
- Goal: Find an estimator for $\left(x_{t}\right)$ of the form

$$
\hat{x}_{t}=\sum_{r=-\infty}^{\infty} a_{r} y_{t-r}
$$

- Solved by Norbert Wiener and Andrey Kolmogorov in the 1940's.

Frequency-Domain Approach

- Orthogonality principle: optimum $\left(a_{r}\right)$ satisfies

$$
\mathbb{E}\left[\left(x_{t}-\sum_{r=-\infty}^{\infty} a_{r} y_{t-r}\right) y_{t-s}\right]=0 \Rightarrow \sum_{r=-\infty}^{\infty} a_{r} \gamma_{y}(s-r)=\gamma_{x y}(s)
$$

for all $s=0, \pm 1, \pm 2, \ldots$

- Use spectral representation and properties of linear filters:

$$
\begin{aligned}
A(\omega) f_{y}(\omega) & =f_{x y}(\omega) \\
A(\omega)\left(|B(\omega)|^{2} f_{x}(\omega)+f_{v}(\omega)\right) & =B^{*}(\omega) f_{x}(\omega)
\end{aligned}
$$

where: $A(\omega), B(\omega)$ are the frequency responses of $\left(a_{r}\right),\left(\beta_{r}\right)$.

- Optimal filter's frequency response:

$$
A(\omega)=\frac{B^{*}(\omega)}{|B(\omega)|^{2}+\operatorname{SNR}(\omega)}
$$

- Minimized MSE

$$
M S E^{*}=\int_{-\frac{1}{2}}^{\frac{1}{2}}\left[f_{x}(\omega)-\frac{|B(\omega)|^{2}}{\left(|B(\omega)|^{2}+\operatorname{SNR}(\omega)\right)^{2}}\right] d \omega
$$

