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Genera Info

• HW3 is out. Due Monday 11/2/2020.

• Thank you for filling out midquarter feedback.
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Spectral Analysis – So Far...

• Periodogram indicates the component of data variance

explainable by sinusoids at frequency j .

• The spectral density f (ω) has a Fourier series representation with

coefficients given by the covariance function γ(h).

• The spectral density gives typical size of random variable

periodogram.

• The spectral density and cross-spectral density play nicely with

linear filtering.
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Spectral Density



Linear Filters and Spectral Density, I (review)

• Definition: Linear filtering of (xt) to produce (yt)

yt =
∞∑

j=−∞

ajxt−j ,
∞∑

j=−∞

|aj | <∞.

“(yt) is the convolution of xt and (at)”.

• Definition: (at)t∈Z is the filter’s impulse response function.

• Definition: The filter’s frequency response function is

A(ω) ≡
∞∑

j=−∞

aje
−2πiωj .

• Property 4.3: If (xt) has spectrum fx(ω), then

fy (ω) = |A(ω)|2fx(ω).
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Linear Filters and Spectral Density, II (review)

• Example: Differencing

yt = ∇xt

• Frequency response

A(ω) = 1− e−2πiω.

• Relation between spectra

fy (ω) = |A(ω)|2 fx(ω) =
∣∣∣1− e−2πiω

∣∣∣2 fx(ω) = 2 (1− cos (2πω))2 fx(ω).

• Example: xt is white noise with intensity σ2:

fy (ω) = |A(ω)|2σ2 = 2 (1− cos (2πω))2 σ2

−0.4−0.2 0 0.2 0.4
0
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“Differencing white noise creates a bluish noise.”
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Linear Filters and Spectral Density, III (review)

• Example: Symmetric Moving Average:

(at) =

(
. . . , 0,

1

5
,

1

5
,

1

5
,

1

5
,

1

5
, 0, . . .

)
yt =

∞∑
j=−∞

ajxt−j =
1

5
(xt−2 + xt−1 + xt + xt+1 + xt+2) .

• Frequency response:

A(ω) =
1

5
[1 + 2 cos(2πω) + 2 cos(4πω)]

xt is white noise of intensity σ2:

fy (ω) = |A(ω)|2σ2

−0.4−0.2 0 0.2 0.4
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• “Moving average of white noise creates a pinkish noise.”
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Cross-Spectra



Cross-Covariance

• Recall: The cross-covariance of two jointly stationary processes

(xt) and (yt) is

γxy (h) = Cov(xt+h, yt).

• Example: Delay + noise:

yt = a · xt−d + wt , (xt), (wt) are stationary and uncorrelated.

γxy (h) = Cov(xt+h, a · xt−d + wt)

= a · Cov(xt+h, xt−d) = a · γx(h + d).
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Cross-Spectral Density

• Definition: For two jointly stationary processes (xt) and (yt),

suppose that
∞∑

h=−∞

|γxy (h)| <∞.

Then the Fourier series

fxy (ω) =
∞∑

h=−∞

γxy (h)e−2πiωh,

defines a continuous complex-valued function on (−1/2, 1/2),

denoted the cross-spectral density.

• γxy (h) can be recovered from

γxy (h) =

∫ 1
2

− 1
2

e2πiωhfxy (ω)dω, h = 0,±1,±2, . . . .

(Fourier coefficients of fxy (ω))
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Properties of Cross-Spectral Density

• Warning: fxy (ω) is, in general, complex-valued.

• Real/Imaginary Decomposition:

fxy (ω) =

cospectrum︷ ︸︸ ︷
cxy (ω) −i

quadspectrum︷ ︸︸ ︷
qxy (ω) , ω ∈ (−1/2, 1/2).

• Hermitian Symmetry:

fxy (ω) = f ∗yx(ω),

cxy (ω) = cyx(ω), qxy (ω) = −qyx(ω).

(why?)
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Coherence

• Definition: Squared Coherence function

ρ2
xy (ω) =

|fyx(ω)|2

fx(ω)fy (ω)

(note similarity to correlation).

• Range:

0 ≤ ρ2
xy (ω) ≤ 1.

• Interpretation:

• ρ = 1 implies perfect correlation at frequency ω.

• ρ = 0 implies uncorrelatedness at frequency ω.

• “If two processes are strongly coherent at ω, we can estimate the

sinusiod component of frequency ω of (yt) by observing (xt).
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Cross-Spectral Density, Example

Delay + noise:

yt = xt−d + wt , (wt) is uncorrelated with (xt).

• Cross-spectrum:

fyx(ω) = e−2πidωfx(ω).

• Amplitude of cross-spectrum:

|fyx(ω)| = |fxy (ω)| = |fx(ω)| = fx(ω).
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Cross-Spectral Density, Example (cont’d)

Delay + noise:

yt = xt−d + vt , (vt) stationary noise process uncorrelated with (xt).

• Spectral density of (yt):

fy (ω) = fx(ω) + fv (ω)

• Squared Coherence:

ρ2
xy (ω) =

|fxy (ω)|2

fx(ω)fy (ω)
=
|fx(ω)|2

fx(ω)fy (ω)
=

fx(ω)

fx(ω) + fv (ω)

• Signal-to-Noise Ratio (SNR):

SNR(ω) ≡ fx(ω)

fv (ω)
≥ 0.

• Squared Coherence in terms of SNR:

ρ2
xy (ω) =

SNR(ω)

1 + SNR(ω)
∈ [0, 1], ω ∈ (−1/2, 1/2).
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Linear Filters and Cross Spectra

• Recall: Delay + noise:

yt = xt−d+uncorrelated noise

Cross-spectrum: fyx(ω) = e−2πidωfx(ω)

• Extension I: Multiply and delay

yt = a · xt−d

Cross-spectrum: fyx(ω) = a · e−2πidωfx(ω)

• Extension II: Linear filtering:

yt =
∞∑

d=−∞

adxt−d ,
∑
t∈Z
|at | <∞,

Cross-spectrum:

fyx(ω) =

A(ω)︷ ︸︸ ︷
∞∑

d=−∞

ade
−2πidω fx(ω) = A(ω)fx(ω)

(A(ω) is the frequency response of the filter). 13



Spectral Representation of a Vector Stationary Process

• Example 4.20 (and Property 4.18):

Consider a jointly stationary bivariate process (xt , yt). The

autocovariance matrix is

Γ(h) =

(
γx(h) γxy (h)

γyx(h) γy (h)

)
,

and the spectral matrix is

f (h) =

(
fx(h) fxy (h)

fyx(h) fy (h)

)
.

• Note: Hermitian symmetry: Γ∗(ω) = Γ(ω).

• Obvious extensions to higher dimensions.
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Recap

• Periodogram indicates the component of data variance

explainable by sinusoids at frequency j .

• The spectral density f (ω) has a Fourier series representation with

coefficients given by the covariance function γ(h).

• The spectral density gives typical size of random variable

periodogram.

• The cross-spectral density fxy (ω) has a Fourier series

representation with coefficients given by the cross covariance

function γxy (h).

• The spectral density and cross-spectral density play nicely with

linear filtering.

Next:

• Spectral estimation.

• Frequency domain regression. 15



Spectral Estimation



Properties of Periodogram (review)

• Let (wt) be Gaussian white noise. n is odd. Then

In(ωj :n)
iid∼ Exp(σ2

w ), 1, . . . , (n − 1)/2.

Alternately,
2In(j/n)

σ2
w

iid∼ χ2
2, 1, . . . , (n − 1)/2.

• Periodogram of a Gaussian White Noise is an

“Exponential/Chi-squared Noise”.
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Periodogram of White Noise - Several examples

n = 200; freq = (0:(n-1))/n; par(mfrow=c(3,3))

for (i in 1:9) {

d <- fft(rnorm(n)) / sqrt(n)

plot(freq , Mod(d)^2, type=’o’, xlab=’frequency ’,

main = paste(’Realization ’,i, sep=’-’), xlim=(c(0 ,0.5)))

}
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Smoothing the Periodogram, I

• L = 2m + 1 for integer m > 0, L < n/2.

• Running average periodogram smoother:

f̄ (j/n) ≡ 1

L

m∑
k=−m

In

(
j + k

n

)
, j = 1, . . . , (n − 1)/2.

• Interpret indices circularly,

In(±k/n) = In ((n ± k)/n) , k = 0,±1,±2, . . . .

• Remark: In practice we use a weighted average rather than a

uniform average.
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Smoothing the Periodogram, II

• For n odd, set

ωj :n ≡
j

n
, j = 1, . . . ,

n − 1

2
.

• If (wt) is Gaussian white noise,

2Lf̄ (ωj :n)

σ2
w

∼ χ2
2L, j = 1, . . . , (n − 1)/2.

• Why?

• Periogoram of a GWN is proportional to χ2
2.

• Lf̄ (ωj :n) is proportional to the sum of L independent χ2
2.

• Sum of L independent χ2
2 is χ2

2L.
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Normal, Exponential, and Chi-squared Distributions

• Definition: Let Z1, . . . ,Zn
iid∼ (0, 1). Then

n∑
i=1

Z 2
i ∼ χ2

n

has a Chi-squared distribution on n degrees of freedom.

• Properties of χ2
n:

• Probability density function

f (x ; k) =


x(k/2)−1e−x/2

2k/2Γ(k/2)
, x ≥ 0;

0, otherwise.

(Γ(k/2) is the Gamma function)

• E
[
χ2
n

]
= n.

• χ2
2 = Exp(2).
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Smoothing the Periodogram, III

• Property: Let (xt) be Gaussian and stationary with

∞∑
h=−∞

√
|h||γ(h)| <∞.

Then
2Lf̄ (ωj :n)

fx(ωj :n)

approx∼ χ2
2L, j = 1, . . . , (n − 1)/2.

• Why?

• In(ωj :n) are approximately independent fx(ωj :n)χ2
2/2.

• If L� n, Lf̄ (ωj :n) is the sum of L approximately independent

fx(ωj :n)χ2
2/2.

21



Spectral Density and Periodogram (review)

• Suppose (xt) is stationary with absolutely summable γx(h).

fx(ω) = lim
n→∞

E [In (bnωc/n)] , ω ∈ (0, 1/2).

• Suppose that xt is also a Gaussian process. Then, approximately

In(ωj :n)
approx∼ Exp (fx(ωj :n)) , j = 0, 1, . . . , n/2.

Equivalently (Property 4.6),

2In(ωj :n)

fx(ωj :n)

approx∼ χ2
2, , j = 0, 1, . . . , n/2.

• In words: “Spectrum gives typical size of random variable

periodogram.”
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Smoothing the Periodogram, IV

• Define

Ej,n ≡
{

2Lf̄ (ωj :n)

χ2
2L(1− α

2 )
≤ fx(ωj :n) ≤ 2Lf̄ (ωj :n)

χ2
2L(α2 )

}
, α > 0 is small.

• From
2Lf̄ (ωj :n)

fx(ωj :n)

approx∼ χ2
2L, j = 1, . . . , (n − 1)/2,

we have

Pr (Ej,n)→ 1− α

“Ej,n is an asymptotic (1− α) confidence interval for fx(ω)”.
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Smoothing the Periodogram, V

• Let (xt) be stationary Gaussian. Set

Cj,n ≡
[
log
(
f̄ (ωj :n)

)
+ log(2L)− log

(
χ2

2L(1− α

2
)
)
,

log
(
f̄ (ωj :n)

)
+ log(2L) log

(
χ2

2L(
α

2
)
)]
.

• Pr (log(fx(ωj :n)) ∈ Cj,n)→ 1− α. “Cj,n is an asymptotic (1− α)

confidence interval for log(fx(ωj :n)).”
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Example 4.14: Smoothed Periodogram for SOI & Recruitment

soi.ave = mvspec(soi , kernel(’daniell ’,4), log=’no’)

abline(v=c(.25,1,2,3), lty =2)

soi.ave$bandwidth # = 0.225

...
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Log-Smoothed Periodogram for SOI & Recruitment

soi.ave = mvspec(soi , kernel(’daniell ’,4), log=’yes’)

abline(v=c(.25,1,2,3), lty =2)

soi.ave$bandwidth # = 0.225

...
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Coherence Estimation, I

• Discrete Fourier Transform:

dx(j/n) =
1

n

n∑
t=1

xte
−2πij/n, j = 1, . . . , n − 1.

dy (j/n) =
1

n

n∑
t=1

yte
−2πij/n, j = 1, . . . , n − 1.

• Definition: Cross-periodogram

Iyx(ω) = dy (ω)d∗x (ω)
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Coherence Estimation, II

• Running average cross-periodogram smoother :

f̄yx(j/n) ≡ 1

L

m∑
k=−m

Iyx

(
j + k

n

)
, j = 1, . . . , (n − 1)/2,

where

• L = 2m + 1 for integer m > 0, L < n/2.

• Interpret indices circularly, Iyx(±k/n) = Iyx ((n ± k)/n).

• Squared Coherence estimate (uniform weights):

ρ̄2
xy (ωj :n) = ρ̄2

yx(ωj :n) =
|f̄xy (ωj :n)|2

f̄x(ωj :n)f̂y (ωj :n)
.

• Property: If ρyx(ω) = 0,

ρ̄2
yx(ω)(

1− ρ̄2
yx(ω)

) (L− 1)
approx∼ F 2

2L−1.

Used for testing against the null: “no coherence at freq ω”.

Warning: multiple testing; see discussion around Eq. 4.63.
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Example 4.21 Squared Coherence SOI & Recruitment

sr = mvspec(cbind(soi ,rec), kernel("daniell" ,9),

plot.type="coh", plot=TRUE)

sr$df # df = 35.8625

f = qf(.999, 2, sr$df -2) # f = 8.529792

C = f/(18+f) # C = 0.3188779

abline(h = C)

The two series are strongly coherent at: Annual Cycle of 12mo, El-ninõ

Cycle 3-7years (peak is at 9years). 29



Frequency-domain Regression



Lagged Regression Setting

• Lagged regression model

yt =
∞∑

r=−∞
βrxt−r + vt ,

where:

• (vt) is stationary noise,

• (xt) is the stationary observed input series (aka predictor or

covariate)

• (yt) is the observed output series.

• Goal: Estimate filter coefficients (βr ).

• Example: SOI and Recruitment.

• In Lecture 9 we have used the “transfer function modelling”

approach to this setting.
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SOI & Recruitment
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Normal Equations

• Write spectral matrix of (xt , yt):

f (ω) =

(
fx(ω) fxy (ω)

fyx(ω) fy (ω)

)
• Assume that (xt) and (yt) have zero means.

• The MSE

MSEt = E

(yt − ∞∑
r=−∞

βrxt−r

)2
 .

The optimal (βr ) satisfies the orthogonality condition

E

[(
yt −

∞∑
r=−∞

βrxt−r

)
xs+t

]
= 0, ∀s = 0,±1,±2, . . . .

• Corollary: The Normal Equations:
∞∑

r=−∞
βrγx(s − r) = γyx(s), s = 0,±1,±2, . . . .
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A Spectral Approach for Solving the Normal Equations

• The Normal Equations:
∞∑

r=−∞
βrγx(s − r) = γyx(s), s = 0,±1,±2, . . . .

• Write the spectral representation of both sides:

γyx(s) =

∫ 1
2

− 1
2

fyx(ω)e2πiωsdω,

and
∞∑

r=−∞
βrγx(s − r) =

∫ 1
2

− 1
2

∞∑
r=−∞

βr fx(ω)e2πiω(s−r)dω

=

∫ 1
2

− 1
2

B(ω)fx(ω)e2πiωsdω,

B(ω) is the frequency response of the filter (βr ).

• Normal Equations in the frequency domain:

B(ω)fx(ω) = fyx(ω), ω ∈ [−1/2, 1/2].
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Prescription for Lagged Regression:

Step I: The equation B(ω)fx(ω) = fyx(ω) suggests

B̂(ωk) =
f̂xy (ωk)

f̂x(ωk)

as the estimator of the Fourier transform of the regression

coefficients, over a grid ωk = k/M with M � n.

Step II: Assuming that B(ω) is smooth, use:

β̂t =
1

M

M−1∑
k=0

B̂(ωk)e2πiωk t , t = 0,±1,±2, . . . ,±(M/2− 1).

β̂t = 0, |t| ≥ M/2.

• Straightforward extension to vectorial (xt) (Section 7.2).
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Example 4.24: SOI and Recruitment

• High coherence suggests a lagged regression relation.

LagReg(soi , rec , L=15, M=32, inverse=TRUE , threshold =.01)

INPUT: soi OUTPUT: rec L = 15 M = 32

The coefficients beta(0), beta(1), beta (2) ... beta(M/2-1) are

3.463141 2.088613 2.688139 -0.3515829 0.3717705 -18.47931 -12.2633

-8.539368 -6.984553 -4.978238 -4.526358 ... 1.489903 3.744727

The positive lags , at which the coefficients are large

in absolute value , and the coefficients themselves , are:

lag s beta(s)

[1,] 5 -18.479306

[2,] 6 -12.263296

[3,] 7 -8.539368

[4,] 8 -6.984553

The prediction equation is

rec(t) = alpha + sum_s[ beta(s)*soi(t-s) ], where alpha = 65.96584

MSE = 414.0847

• Suggested model:

yt = 66− 18.5xt−5 − 12.3xt−6 − 8.5xt−7 − 7xt−8 + wt . 35



SOI and Recruitment (cont’d)
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Frequency-Domain Representation of the MSE

• Normal Equations in the frequency domain:

B(ω)fx(ω) = fyx(ω), ω ∈ [−1/2, 1/2].

• Minimized MSE satisfies

MSEt = E

[(
yt −

∞∑
r=−∞

βrxt−r

)
yt

]
= γy (0)−

∞∑
r=−∞

βrγxy (−r),

which is independent of t.

• Implies the frequency-domain representation:

MSE =

∫ 1
2

− 1
2

[fy (ω)− B(ω)fxy (ω)] dω =

∫ 1
2

− 1
2

fy (ω)
[
1− ρ2

yx(ω)
]
dω

(large coherence leads to small MSE).
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Optimum Filtering (Wiener-Kolmogorov Problem)

• Model:

yt =
∞∑

r=−∞
βrxt−r + vt ,

where

• (vt) is a noise process uncorrelated of (xt).

• (βr ) are known.

• (yt) is observed. (xt) is not observed.

• Goal: Find an estimator for (xt) of the form

x̂t =
∞∑

r=−∞
aryt−r .

• Solved by Norbert Wiener and Andrey Kolmogorov in the 1940’s.
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Frequency-Domain Approach

• Orthogonality principle: optimum (ar ) satisfies

E

[(
xt −

∞∑
r=−∞

aryt−r

)
yt−s

]
= 0⇒

∞∑
r=−∞

arγy (s − r) = γxy (s)

for all s = 0,±1,±2, . . ..

• Use spectral representation and properties of linear filters:

A(ω)fy (ω) = fxy (ω)

A(ω)
(
|B(ω)|2fx(ω) + fv (ω)

)
= B∗(ω)fx(ω)

where: A(ω), B(ω) are the frequency responses of (ar ), (βr ).

• Optimal filter’s frequency response:

A(ω) =
B∗(ω)

|B(ω)|2 + SNR(ω)

• Minimized MSE

MSE∗ =

∫ 1
2

− 1
2

[
fx(ω)− |B(ω)|2

(|B(ω)|2 + SNR(ω))2

]
dω
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