STATS 207: Time Series Analysis Autumn 2020
 Lecture 11: Spectral Analysis

Dr. Alon Kipnis

October 19th 2020

Genera Info

- HW2 is due today.
- HW3 is out. Due Monday $11 / 2 / 2020$.
- Last chance to submit midquarter feedback (anonymously): https:
//canvas.stanford.edu/courses/123058/quizzes/84145 (Canvas)
- Additional guest lectures (Prophet, bootstrap)

Motivation

Idea: Use periodic variations to model series

$$
x_{t}=\sum_{k=1}^{q}\left[U_{k 1} \cos \left(2 \pi \omega_{k} t\right)+U_{k 2} \sin \left(2 \pi \omega_{k} t\right)\right]
$$

Outline

Sinusoidal Regression and Periodogram

Periodogram

Spectral Density
Linear Filters and Spectral Density

Cross-Spectra
Linear Filters and Cross Spectra

Sinusoidal Regression and
 Periodogram

Sinusoid in Noise (Review)

- $x_{t}=A \cos (2 \pi \omega t+\phi)+w_{t}$, where
- A is the amplitude.
- ϕ is the phase.
- ω is the frequency index or the angular velocity.
- Linearization trick

$$
\beta_{1} \cos (2 \pi \omega t)+\beta_{2} \sin (2 \pi \omega t)=A \cos (2 \pi \omega t+\phi)
$$

- Fit using cos and \sin (instead of A and ϕ):

$$
x_{t}=\beta_{1} \cos (2 \pi \omega t)+\beta_{2} \sin (2 \pi \omega t)+w_{t}
$$

Example 2.10: Signal Hidden in Noise (Review)

```
set.seed(1000) # so you can reproduce these results
x = 2*cos(2*pi*1:500/50 + . 6*pi) + rnorm(500,0,5)
z1 = cos(2*pi*1:500/50)
z2 = sin(2*pi*1:500/50)
summary(fit <- lm(x~0+z1+z2)) # zero to exclude the intercept
par(mfrow=c(2,1)); tsplot(x); tsplot(x, col=8, ylab=expression(hat(x)))
lines(fitted(fit), col=2)
```


How to Determine Periodicity? (Review)

- By Trial and Error:

Period=50, R^2=0.138160

Period=100, $\mathbf{R}^{\wedge} \mathbf{2}=\mathbf{0 . 0 1 2 3 7 4}$

How to Determine Periodicity? (Review)

- OLS regression coefficients

$$
\hat{\beta}_{1}(j / n)=\frac{2}{n} \sum_{t=1}^{n} x_{t} \cos (2 \pi j t / n), \quad \hat{\beta}_{2}(j / n)=\frac{2}{n} \sum_{t=1}^{n} x_{t} \sin (2 \pi j t / n)
$$

- Measure of power in fitted model at frequency $\omega=j / n$:

$$
P(j / n) \equiv \hat{\beta}_{1}^{2}(j / n)+\hat{\beta}_{2}^{2}(i / n)
$$

- R^{2} at frequency j :

$$
R^{2}=\frac{P(j / n)}{\sum_{i=1}^{n} P(j / n)}
$$

Periodogram, I (Review)

- Discrete Fourier Transform (aka Fast Fourier Transform):

$$
d(j / n) \equiv \frac{1}{\sqrt{n}} \sum_{t=1}^{n} x_{t} e^{-2 \pi i t j / n}, \quad j=0, \ldots, n-1, \quad i=\sqrt{-1} .
$$

- Computable in $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$ flops. Standard in digital signal processing.
- Definition: Periodogram

$$
I_{n}(j / n) \equiv|d(j / n)|^{2} .
$$

- Measure of power in fitted model at frequency $\omega=j / n$:

$$
P(j / n)=\frac{4}{n} I_{n}(j / n) .
$$

Periodogram, II (Review)

```
n}=50
x = 2*cos(2*pi*1:n/50 + . 6*pi) + rnorm(n,0,5)
s = fft(x)/sqrt(n)
freq = (0:(n-1) )/n
plot(freq, abs(s)^2, ylab="|d(j/n)| ~2", type="ol",
xlab='freq (j/n)', main='Periodogram of sinusoid + noise')
```

Periodogram of sinusoid + noise

Properties if Periodogram I

- Nonnegativity

$$
I_{n}(j / n) \geq 0, \quad j=0, \ldots, n-1 .
$$

- Decomposition of variance: Let n be odd and set $m=(n-1) / 2$.

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}=\frac{1}{m} \sum_{j=1}^{m} I_{n}(j / n)
$$

("Pythagorean theorem" or "Parseval's identity").

- Fraction of variance explained by sinusoids

$$
R^{2}(j / n)=\frac{I_{n}(j / n)}{m \hat{\sigma}^{2}} .
$$

- In words: "Periodogram indicates the component of data variance explainable by sinusoids at frequency j ". "This can never be negative". "It leverages to the total variance of the signal".

Properties of Priodogram II

- Let $\left(w_{t}\right)$ be Gaussian White Noise. Assume n is odd.

$$
I_{n}(j / n) \stackrel{i i d}{\sim} \operatorname{Exp}(1), \quad j=1, \ldots,(n-1) / 2
$$

where $\operatorname{Exp}(\mu)$ is the exponential distribution with mean μ.

$$
X \sim \operatorname{Exp}(\mu) \Leftrightarrow F_{X}(t)=\operatorname{Pr}(X \leq t)=1-e^{-t / \mu}, \quad t \geq 0 .
$$

In words: "Periodogram of a Gaussian white Noise is an Exponential White Noise".

- Mirroring effect: $I(j / n)=I(1-j / n), j=0, \ldots, n-1$.

Periodogram of White Noise - Several Realizations

Realization-1

Realization-4

Realization-7

frequency

Realization-2

Realization-5

Realization-8

Realization-3

Realization-6

Realization-9

Spectral Density

Example 4.4: A Periodic Stationary Process

- Consider

$$
x_{t}=w_{1} \cos \left(2 \pi \omega_{0} t\right)+w_{2} \sin \left(2 \pi \omega_{0} t\right), \quad w_{1}, w_{2} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Every realization of the process is periodic with period $1 / \omega_{0}$.
- We have

$$
\begin{aligned}
\gamma_{x}(t+h, t)= & \frac{\sigma^{2}}{2} \cos \left(2 \pi \omega_{0}(t+h)\right) \cos \left(2 \pi \omega_{0} t\right) \\
& +\frac{\sigma^{2}}{2} \sin \left(2 \pi \omega_{0}(t+h)\right) \sin \left(2 \pi \omega_{0} t\right) \\
= & \sigma^{2} \cos \left(2 \pi \omega_{0} h\right)=\frac{\sigma^{2}}{2} e^{-2 \pi i \omega_{0} h}+\frac{\sigma^{2}}{2} e^{2 \pi i \omega_{0} h}=\gamma_{x}(h)
\end{aligned}
$$

- Write

$$
\gamma_{x}(h)=\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2 \pi i \omega h} d F(\omega), \quad F(\omega)= \begin{cases}0 & \omega<-\omega_{0} \\ \sigma^{2} / 2 & -\omega_{0} \leq \omega<\omega_{0} \\ \sigma^{2} & \omega \geq \omega_{0}\end{cases}
$$

- Definition: $F(\omega)$ is the spectral distribution function.

Spectral Density I

- Property 4.1: If $\left(x_{t}\right)$ is stationary, there exists a unique monotonic function $F(\omega)$, called the spectral distribution function, with $F(-\infty)=F(-1 / 2)=0, F(\infty)=F(1 / 2)=\gamma(0)$, and

$$
\gamma(h)=\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2 \pi i \omega h} d F(\omega)
$$

- Property 4.2: If $\gamma(h)$ (of a stationary process $\left(x_{t}\right)$) satisfies

$$
\sum_{h=-\infty}^{\infty}|\gamma(h)|<\infty
$$

then

$$
\gamma(h)=\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2 \pi i \omega h} f(\omega) d \omega, \quad h=0, \pm 1, \pm 2, \ldots
$$

where

$$
f(\omega)=\sum_{h=-\infty}^{\infty} \gamma(h) e^{-2 \pi i \omega h}, \quad-1 / 2 \leq \omega \leq 1 / 2
$$

- Definition: $f(\omega)$ is the spectral density function of $\left(x_{t}\right)$.

Spectral Density II

Property 4.2: If $\gamma(h)$ (of a stationary process $\left(x_{t}\right)$) satisfies

$$
\sum_{h=-\infty}^{\infty}|\gamma(h)|<\infty
$$

then

$$
\gamma(h)=\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2 \pi i \omega h} f(\omega) d \omega, \quad h=0, \pm 1, \pm 2, \ldots
$$

where

$$
f(\omega)=\sum_{h=-\infty}^{\infty} \gamma(h) e^{-2 \pi i \omega h}, \quad-1 / 2 \leq \omega \leq 1 / 2
$$

In words:

- "If the covariance function $\gamma(h)$ is absolutely summable, then the spectral distribution $F(\omega)$ is absolutely continuous. The spectral density $f(\omega)$ is the density of the spectral distribution.
- "The spectral density $f(\omega)$ has a Fourier series representation with coefficients given by the covariance function $\gamma(h)$ ".

Properties of Spectral Density, I

- Nonnegativity:

$$
f_{x}(\omega) \geq 0, \quad \omega \in(-1 / 2,1 / 2)
$$

- Decomposition of variance

$$
\operatorname{Var}\left(x_{t}\right)=\gamma_{x}(0)=\int_{-\frac{1}{2}}^{\frac{1}{2}} f_{x}(\omega) d \omega=F_{x}(1 / 2)
$$

- In words: "Spectrum is the variance explainable by sinusoids at frequency ω ". "This can never be negative", "It sums to the total variance of the stochastic process".

Relation to Periodogram

- Suppose $\left(x_{t}\right)$ is stationary with absolutely summable $\gamma_{x}(h)$.

$$
f_{x}(\omega)=\lim _{n \rightarrow \infty} \mathbb{E}\left[I_{n}(\lfloor n \omega\rfloor / n)\right], \quad \omega \in(0,1 / 2)
$$

- Suppose that x_{t} is also a Gaussian process. Then, approximately

$$
I_{n}(j / n) \stackrel{\text { approx }}{\sim} \operatorname{Exp}\left(f_{x}(j / n)\right), \quad j=0,1, \ldots, n / 2 .
$$

Equivalently (Property 4.6),

$$
\frac{2 I_{n}(j / n)}{f_{x}(j / n)} \stackrel{\text { approx }}{\sim} \chi_{2}^{2},, \quad j=0,1, \ldots, n / 2 .
$$

- In words: "Spectrum gives typical size of random variable periodogram."

Example 4.13: Priodogram of SOI

```
# n = 480, Delta = 1/12
par(mfrow=c(2,1))
soi.per = mvspec(soi, log="no"); abline(v=1/4, lty=2)
Series: soi
Raw Periodogram
```


Significant power at $\omega=1 \Delta$ and $\omega=\Delta / 4$, where $\Delta=1 / 12$.

Example 4.13: Priodogram of SOI (cont'd)

From

$$
\frac{2 I_{n}(j / n)}{f_{x}(j / n)} \stackrel{\text { approx }}{\sim} \chi_{2}^{2}
$$

approximate $100(1-\alpha) \%$ confidence interval for $f_{S O I}(\omega)$ is found by

$$
\frac{2 I_{n}(\lfloor n \omega\rfloor / n)}{\chi_{2}^{2}(1-\alpha / 2)} \leq f_{S O I}(\omega) \leq \frac{2 I_{n}(\lfloor n \omega\rfloor / n)}{\chi_{2}^{2}(\alpha / 2)} .
$$

```
# Values of SOI's periodogoram at peaks:
soi.per$spec[40] # 0.97223; soi pgram at freq 1/12 = 40/480
soi.per$spec[10] # 0.05372; soi pgram at freq 1/48 = 10/480
al = . 05
    # conf intervals - returned value:
U = qchisq(al/2,2) # 0.05063
L = qchisq(1-al/2,2) # 7.37775
2*soi.per$spec[40]/L # 0.26355
2*soi.per$spec[40]/U # 38.40108
2*soi.per$spec[10]/L # 0.01456
2*soi.per$spec[10]/U # 2.12220
```

Cannot establish significance of peak at $\omega=\Delta / 4$!
Next Lecture: Better estimate by smoothing the periodogram.

Properties of the Spectral Density, II

- If $\left(w_{t}\right)$ is Gaussian white noise, then

$$
f_{w}(\omega)=\sigma_{w}^{2}, \quad \omega \in(-1 / 2,1 / 2) .
$$

- In words: "In a white noise..."
- "all ordinates of the periodogram have the same expectation".
- "the expectation is the variance of the process".
- "all frequencies are present in equal intensity".

Newton \& Spectrum, I

Newton and the Color Spectrum

Our modern understanding of light and color begins with Isaac Newton (16421726) and a series of experiments that he publishes in 1672. He is the first to understand the rainbow - he refracts white light with a prism, resolving it into its component colors: red, orange, yellow, green, blue and violet.

In the late 1660s, Newton starts experimenting with his 'celebrated

The diagram from Sir Isaac Newton's crucial experiment, 1666-72. A ray of light is divided into its constituent colors by the first prism (left), and the resulting bundle of colred rays is reconstituted into white light by the second. phenomenon of colors.' At the time, people thought that color was a mixture of light and darkness, and that prisms

colored light. Hooke was a proponent of this theory of color, and had a scale that went from brilliant red, which was pure white light with the least amount of darkness added, to dull blue, the last step before black, which was the complete extinction of light by darkness. Newton realizes this theory was false.

Newton \& Spectrum, II

At Last: Meaning of the Term "White Noise"

- Newton's Prism:

White light is made of colored light, in equal intensities.

- Spectrum analysis:

White noise is made of sinusoids of different frequencies, in equal intensities.

- Optical analogy:

$$
\text { "Colored Light" } \leftrightarrow \text { "Sinosuid" }
$$

- Acoustic analogy:

$$
" P u r e ~ T o n e s " ~(e . g . ~ m i d d l e ~ A) ~ ↔ ~ " S i n o s u i d "(e . g . ~ 440 H z) ~
$$

Acoustic "White Noise" is a superposition of all possible pure tones, in equal, random amounts.

Noise Color

The optimal analogy suggests the following terminology:

- Pink noise:
$f_{x}(\omega)$ is large near $\omega=0$, i.e., x_{t} is 'built from' lower frequencies.
- Blue noise:
$f_{x}(\omega)$ is large near $\omega=1 / 2$, i.e., $\left(x_{t}\right)$ is 'built from' higher frequencies.
- https://en.wikipedia.org/wiki/Colors_of_noise

Properties of Spectral Density, III

- Property 4.4 Spectral density of ARMA. $\left(x_{t}\right)$ is $\operatorname{ARMA}(p, q)$:

$$
f_{x}(\omega)=\sigma_{w}^{2} \frac{\left|\theta\left(e^{-2 \pi i \omega}\right)\right|^{2}}{\left|\phi\left(e^{-2 \pi i \omega}\right)\right|^{2}}
$$

where:

- $\phi(z)=1-\sum_{k=1}^{p} \phi_{k} z^{k}$ is AR polynomial.
- $\theta(z)=1+\sum_{k=1}^{q} \theta_{k} z^{k}$ is MA polynomial.
- Example: $\left(x_{t}\right)$ is $\operatorname{MA}(1)$,

$$
f_{x}(\omega)=\sigma_{w}^{2}\left|1+\theta e^{-2 \pi i \omega}\right|^{2}=\sigma_{w}^{2}\left(1+2 \theta \cos (2 \pi \omega)+\theta^{2}\right)
$$

- Example: $\left(x_{t}\right)$ is $\mathbf{A R}(1)$,

$$
f_{x}(\omega)=\frac{\sigma_{w}^{2}}{1+2 \phi \cos (2 \pi \omega)+\phi^{2}}
$$

Possible "Colors" of MA(1)

- Example: $\left(x_{t}\right)$ is MA(1),

$$
f_{x}(\omega)=\sigma_{w}^{2}\left|1+\theta e^{-2 \pi i \omega}\right|^{2}=\sigma^{2}\left(1+2 \theta \cos (2 \pi \omega)+\theta^{2}\right)
$$

- $\operatorname{Pick} \theta=1$:

$$
f_{x}(\omega)=2+2 \cos (2 \pi \omega)
$$

('Pink' Noise)

- Pick $\theta=-1$:

$$
f_{x}(\omega)=2-2 \cos (2 \pi \omega)
$$

('Blue' Noise)

Possible "Colors" of $A R(1)$

- Example: $\left(x_{t}\right)$ is $\mathbf{A R}(1)$,

$$
f_{x}(\omega)=\frac{\sigma^{2}}{1+2 \theta \cos (2 \pi \omega)+\theta^{2}}
$$

- Pick $\phi=1-\epsilon, \epsilon>0$ tiny (high positive correlation):

$$
\begin{aligned}
f_{x}(\omega)= & \frac{\sigma_{w}^{2}}{1+(1-\epsilon)^{2}-2(1-\epsilon) \cos (2 \pi \omega)} \\
& \text { ('Red' Noise) }
\end{aligned}
$$

- Pick $\phi=-(1-\epsilon), \epsilon>0$ tiny (high negative correlation):

Example 4.7: Spectrum of AR(2)

$$
x_{t}-x_{t-1}+.9 x_{t-2}=w_{t}, \quad \sigma_{w}^{2}=1
$$

$\phi(z)=1-z+.9 z^{2} . \theta(z)=1$. From ${ }^{\text {Tme }}$ Property 4.4

$$
\begin{aligned}
f_{x}(\omega) & =\left|\phi\left(e^{-2 \pi i \omega}\right)\right|^{-2}=\left|1-e^{-2 \pi i \omega}+.9 e^{-4 \pi i \omega}\right|^{-2} \\
& =(2.81-3.8 \cos (2 \pi \omega)+1.8 \cos (4 \pi \omega))^{-1}
\end{aligned}
$$

arma.spec(ar=c(1,..9), log='no')

Linear Filters and Spectral Density, I

- Definition: Linear filtering of $\left(x_{t}\right)$ to produce $\left(y_{t}\right)$

$$
y_{t}=\sum_{j=-\infty}^{\infty} a_{j} x_{t-j}, \quad \sum_{j=-\infty}^{\infty}\left|a_{j}\right|<\infty
$$

" $\left(y_{t}\right)$ is the convolution of x_{t} and $\left(a_{t}\right)$ ".

- Definition: $\left(a_{t}\right)_{t \in \mathbb{Z}}$ is the filter's impulse response function.
- Definition: The filter's frequency response function is

$$
A(\omega) \equiv \sum_{j=-\infty}^{\infty} a_{j} e^{-2 \pi i \omega j}
$$

- Property 4.3: If $\left(x_{t}\right)$ has spectrum $f_{x}(\omega)$, then

$$
f_{y}(\omega)=|A(\omega)|^{2} f_{x}(\omega) .
$$

Linear Filters and Spectral Density, II

- Example: Differencing

$$
y_{t}=\nabla x_{t}
$$

- Frequency response

$$
A(\omega)=1-e^{-2 \pi i \omega}
$$

- Relation between spectra

$$
f_{y}(\omega)=|A(\omega)|^{2} f_{x}(\omega)=\left|1-e^{-2 \pi i \omega}\right|^{2} f_{x}(\omega)=2(1-\cos (2 \pi \omega))^{2} f_{x}(\omega)
$$

- Example: x_{t} is white noise with intensity σ^{2} :

$$
f_{y}(\omega)=|A(\omega)|^{2} \sigma^{2}=2(1-\cos (2 \pi \omega))^{2} \sigma^{2}
$$

"Differencing white noise creates a bluish noise."

Linear Filters and Spectral Density, III

- Example: Symmetric Moving Average:

$$
\begin{gathered}
\left(a_{t}\right)=\left(\ldots, 0, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0, \ldots\right) \\
y_{t}=\sum_{j=-\infty}^{\infty} a_{j} x_{t-j}=\frac{1}{5}\left(x_{t-2}+x_{t-1}+x_{t}+x_{t+1}+x_{t+2}\right) .
\end{gathered}
$$

- Frequency response:

$$
A(\omega)=\frac{1}{5}[1+2 \cos (2 \pi \omega)+2 \cos (4 \pi \omega)]
$$

x_{t} is white noise of intensity σ^{2} :

$$
f_{y}(\omega)=|A(\omega)|^{2} \sigma^{2}
$$

- "Moving average of white noise creates a pinkish noise."

Cross-Spectra

Cross-Covariance

- Recall: The cross-covariance of two stationary processes $\left(x_{t}\right)$ and $\left(y_{t}\right)$ is

$$
\gamma_{x y}(h)=\operatorname{Cov}\left(x_{t+h}, y_{t}\right) .
$$

- Example: Delay + noise:

$$
\begin{aligned}
& y_{t}=a \cdot x_{t-d}+w_{t}, \quad\left(x_{t}\right) \text { is stationary } \\
& \begin{aligned}
\gamma_{x y}(h) & =\operatorname{Cov}\left(x_{t+h}, a \cdot x_{t-d}+w_{t}\right) \\
& =a \cdot \operatorname{Cov}\left(x_{t+h}, x_{t-d}\right)=a \gamma_{x}(h+d) .
\end{aligned}
\end{aligned}
$$

Cross-Spectral Density

- Definition: For two stationary processes $\left(x_{t}\right)$ and $\left(y_{t}\right)$, suppose that

$$
\sum_{h=-\infty}^{\infty}\left|\gamma_{x y}(h)\right|<\infty
$$

Then the Fourier series

$$
f_{x y}(\omega)=\sum_{h=-\infty}^{\infty} \gamma_{x y}(h) e^{-2 \pi i \omega h}
$$

defines a continuous complex-valued function on ($-1 / 2,1 / 2$), denoted the cross-spectral density.

- $\gamma_{x y}(h)$ can be recovered from

$$
\gamma_{x y}(h)=\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2 \pi i \omega h} f_{x y}(\omega) d \omega, \quad h=0, \pm 1, \pm 2, \ldots
$$

(Fourier coefficients of $f_{x y}(\omega)$)

Properties of Cross-Spectral Density

- Warning: $f_{x y}(\omega)$ is, in general, complex-valued .
- Real/Imaginary Decomposition:

$$
f_{x y}(\omega)=\overbrace{c_{x y}(\omega)}^{\text {cospectrum }}-i \overbrace{q_{x y}(\omega)}^{\text {quadspectrum }}, \quad \omega \in(-1 / 2,1 / 2) .
$$

- Hermitian Symmetry:

$$
\begin{gathered}
f_{x y}(\omega)=\overline{f_{y x}(\omega)}, \\
c_{x y}(\omega)=c_{y x}(\omega), \quad q_{x y}(\omega)=-q_{y x}(\omega) .
\end{gathered}
$$

(why?)

Coherence

- Definition: Squared Coherence function

$$
\rho_{x y}^{2}(\omega)=\frac{\left|f_{y x}(\omega)\right|^{2}}{f_{x}(\omega) f_{y}(\omega)}
$$

(note similarity to correlation).

- Range:

$$
0 \leq \rho_{x y}^{2}(\omega) \leq 1
$$

- Interpretation:
- $\rho=1$ implies perfect linear correlation at frequency ω.
- $\rho=0$ implies uncorrelatedness at frequency ω.

Cross-Spectral Density, Example

Delay + noise:

$$
y_{t}=x_{t-d}+w_{t}, \quad\left(w_{t}\right) \text { is white noise independent of }\left(x_{t}\right) .
$$

- Cross-spectrum:

$$
\begin{aligned}
f_{x y}(\omega) & =\sum_{h=-\infty}^{\infty} \gamma_{x y}(h) e^{-2 \pi i h \omega}=\sum_{h=-\infty}^{\infty} \gamma_{x}(h+d) e^{-2 \pi i h \omega} \\
& =\sum_{u=-\infty}^{\infty} \gamma_{x}(u) e^{-2 \pi i(u-d) \omega}=e^{2 \pi i d \omega} \sum_{u=-\infty}^{\infty} \gamma_{x}(u) e^{-2 \pi i u \omega} \\
& =e^{2 \pi i d \omega} f_{x}(\omega)
\end{aligned}
$$

- Amplitude of cross-spectrum:

$$
\left|f_{x y}(\omega)\right|=\left|f_{x}(\omega)\right|=f_{x}(\omega)
$$

Cross-Spectral Density, Example (cont'd)

Delay + noise:

$$
y_{t}=x_{t-d}+w_{t}, \quad\left(w_{t}\right) \text { white noise independent of }\left(x_{t}\right)
$$

- Spectral density of $\left(y_{t}\right)$:

$$
f_{y}(\omega)=f_{x}(\omega)+f_{w}(\omega)=f_{x}(\omega)+\sigma_{w}^{2}
$$

- Squared Coherence:

$$
\rho_{x y}^{2}(\omega)=\frac{\left|f_{x y}(\omega)\right|^{2}}{f_{x}(\omega) f_{y}(\omega)}=\frac{\left|f_{x}(\omega)\right|^{2}}{f_{x}(\omega) f_{y}(\omega)}=\frac{f_{x}(\omega)}{f_{x}(\omega)+\sigma_{w}^{2}}
$$

- Signal-to-Noise Ratio (SNR):

$$
\operatorname{SNR}(\omega) \equiv \frac{f_{x}(\omega)}{f_{w}(\omega)}=\frac{f_{x}(\omega)}{\sigma_{w}^{2}} \geq 0
$$

- Squared Coherence in terms of SNR:

$$
\rho_{x y}^{2}(\omega)=\frac{\operatorname{SNR}(\omega)}{1+\operatorname{SNR}(\omega)} \in[0,1], \quad \omega \in(-1 / 2,1 / 2) .
$$

Linear Filters and Cross Spectra, I

- Recall: Linear filtering:

$$
y_{t}=\sum_{h=-\infty}^{\infty} a_{h} x_{t-h}
$$

where $\left(a_{t}\right)_{t \in \mathbb{Z}}$ is absolutely summable $\left(\left(a_{t}\right)_{t \in \mathbb{Z}}\right.$ is the impulse response of the filter).

- The spectral density of the filter's output (Property 4.3):

$$
f_{y}(\omega)=|A(\omega)|^{2} f_{x}(\omega)
$$

where

$$
A(\omega)=\sum_{h=-\infty}^{\infty} a_{h} e^{-2 \pi i \omega h}, \quad \omega \in(-1 / 2,1 / 2)
$$

- Q: What is the input-output cross-spectrum $f_{x y}(\omega)$?
- $A: f_{y x}(\omega)=A(\omega) f_{x}(\omega)$.

Linear Filters and Cross Spectra, Example

- Example: Pure delay

$$
y_{t}=a \cdot x_{t-d}
$$

- Frequency response

$$
A(\omega)=a \cdot e^{-2 \pi i d \omega} .
$$

- Cross-spectrum:

$$
f_{y x}(\omega)=a \cdot e^{-2 \pi i d \omega} f_{x}(\omega) .
$$

- Output spectrum

$$
f_{y}(\omega)=a^{2} \cdot f_{x}(\omega)
$$

- Squared coherence

$$
\rho_{y x}^{2}(\omega)=\frac{\left|a \cdot e^{-2 \pi i d \omega}\right|^{2}}{a^{2} f_{x}(\omega) \cdot f_{x}(\omega)}=1
$$

"Time-delay does not affect correlation at frequency ω, for all $\omega \in(-1 / 2,1 / 2)$."

Linear Filters and Cross Spectra, Example 4.19

- Example: Three-point moving average

$$
y_{t}=\frac{1}{3}\left(x_{t-1}+x_{t}+x_{t+1}\right)
$$

- Frequency response

$$
A(\omega)=\frac{1}{3}(1+2 \cos (2 \pi \omega)) .
$$

- Cross-spectrum:

$$
f_{y x}(\omega)=\frac{1}{3}(1+2 \cos (2 \pi \omega)) f_{x}(\omega) .
$$

(purely real!)

- Output spectrum:

$$
f_{y}(\omega)=\frac{1}{9}(1+2 \cos (2 \pi \omega))^{2} f_{x}(\omega) .
$$

- Squared coherence:

$$
\rho_{x y}^{2}=\frac{\left|\frac{1}{3}(1+2 \cos (2 \pi \omega)) f_{x}(\omega)\right|^{2}}{f_{x}(\omega) \cdot \frac{1}{9}(1+2 \cos (2 \pi \omega))^{2} f_{x}(\omega)}=1 .
$$

Recap

- Periodogram indicates the component of data variance explainable by sinusoids at frequency j.
- The spectral density $f(\omega)$ has a Fourier series representation with coefficients given by the covariance function $\gamma(h)$.
- The spectral density gives typical size of random variable periodogram.
- The cross-spectral density $f_{x y}(\omega)$ has a Fourier series representation with coefficients given by the cross covariance function $\gamma_{x y}(h)$.
- The spectral density and cross-spectral density play nicely with linear filtering.

Next 1-2 Lectures:

- Spectral estimation.
- Frequency domain regression \& principal components analysis.

