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Genera Info

• HW2 is due today.

• HW3 is out. Due Monday 11/2/2020.

• Last chance to submit midquarter feedback (anonymously):

https:

//canvas.stanford.edu/courses/123058/quizzes/84145

(Canvas)

• Additional guest lectures (Prophet, bootstrap)
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Motivation

Idea: Use periodic variations to model series

xt =

q∑
k=1

[Uk1 cos(2πωkt) + Uk2 sin(2πωkt)]

2



Outline

Sinusoidal Regression and Periodogram

Periodogram

Spectral Density

Linear Filters and Spectral Density

Cross-Spectra

Linear Filters and Cross Spectra
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Sinusoidal Regression and

Periodogram



Sinusoid in Noise (Review)

• xt = A cos (2πωt + φ) + wt , where

• A is the amplitude.

• φ is the phase.

• ω is the frequency index or the angular velocity.

• Linearization trick

β1 cos(2πωt) + β2 sin(2πωt) = A cos (2πωt + φ)

• Fit using cos and sin (instead of A and φ):

xt = β1 cos (2πωt) + β2 sin (2πωt) + wt .
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Example 2.10: Signal Hidden in Noise (Review)

set.seed (1000) # so you can reproduce these results

x = 2*cos(2*pi*1:500/50 + .6*pi) + rnorm (500,0,5)

z1 = cos(2*pi*1:500/50)

z2 = sin(2*pi*1:500/50)

summary(fit <- lm(x~0+z1+z2)) # zero to exclude the intercept

par(mfrow=c(2 ,1)); tsplot(x); tsplot(x, col=8, ylab=expression(hat(x)))

lines(fitted(fit), col=2)
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How to Determine Periodicity? (Review)

• By Trial and Error:
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How to Determine Periodicity? (Review)

• OLS regression coefficients

β̂1(j/n) =
2

n

n∑
t=1

xt cos(2πjt/n), β̂2(j/n) =
2

n

n∑
t=1

xt sin(2πjt/n)

• Measure of power in fitted model at frequency ω = j/n:

P(j/n) ≡ β̂2
1(j/n) + β̂2

2(i/n)

• R2 at frequency j :

R2 =
P(j/n)∑n
i=1 P(j/n)
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Periodogram, I (Review)

• Discrete Fourier Transform (aka Fast Fourier Transform):

d(j/n) ≡ 1√
n

n∑
t=1

xte
−2πitj/n, j = 0, . . . , n − 1, i =

√
−1.

• Computable in O(n log(n)) flops. Standard in digital signal

processing.

• Definition: Periodogram

In(j/n) ≡ |d(j/n)|2 .

• Measure of power in fitted model at frequency ω = j/n:

P(j/n) =
4

n
In(j/n).
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Periodogram, II (Review)

n = 500

x = 2*cos(2*pi*1:n/50 + .6*pi) + rnorm(n,0,5)

s = fft(x)/sqrt(n)

freq = (0:(n-1) )/n

plot(freq , abs(s)^2, ylab="|d(j/n)|^2", type="ol",

xlab=’freq (j/n)’, main=’Periodogram of sinusoid + noise’)
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Properties if Periodogram I

• Nonnegativity

In(j/n) ≥ 0, j = 0, . . . , n − 1.

• Decomposition of variance: Let n be odd and set m = (n − 1)/2.

σ̂2 =
1

n

n∑
j=1

(xj − x̄)2 =
1

m

m∑
j=1

In(j/n)

(“Pythagorean theorem” or “Parseval’s identity”).

• Fraction of variance explained by sinusoids

R2(j/n) =
In(j/n)

mσ̂2
.

• In words: “Periodogram indicates the component of data

variance explainable by sinusoids at frequency j”. “This can

never be negative”. “It leverages to the total variance of the

signal”.
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Properties of Priodogram II

• Let (wt) be Gaussian White Noise. Assume n is odd.

In(j/n)
iid∼ Exp(1), j = 1, . . . , (n − 1)/2,

where Exp(µ) is the exponential distribution with mean µ.

X ∼ Exp(µ)⇔ FX (t) = Pr(X ≤ t) = 1− e−t/µ, t ≥ 0.

In words: “Periodogram of a Gaussian white Noise is an

Exponential White Noise”.

• Mirroring effect: I (j/n) = I (1− j/n), j = 0, . . . , n − 1.
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Periodogram of White Noise – Several Realizations
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Spectral Density



Example 4.4: A Periodic Stationary Process

• Consider

xt = w1 cos(2πω0t) + w2 sin(2πω0t), w1,w2
iid∼ N (0, σ2).

• Every realization of the process is periodic with period 1/ω0.

• We have

γx(t + h, t) =
σ2

2
cos(2πω0(t + h)) cos(2πω0t)

+
σ2

2
sin(2πω0(t + h)) sin(2πω0t)

= σ2 cos(2πω0h) =
σ2

2
e−2πiω0h +

σ2

2
e2πiω0h = γx(h)

• Write

γx(h) =

∫ 1
2

− 1
2

e2πiωhdF (ω), F (ω) =


0 ω < −ω0,

σ2/2 −ω0 ≤ ω < ω0,

σ2 ω ≥ ω0.

• Definition: F (ω) is the spectral distribution function.
13



Spectral Density I

• Property 4.1: If (xt) is stationary, there exists a unique monotonic

function F (ω), called the spectral distribution function, with

F (−∞) = F (−1/2) = 0, F (∞) = F (1/2) = γ(0), and

γ(h) =

∫ 1
2

− 1
2

e2πiωhdF (ω)

• Property 4.2: If γ(h) (of a stationary process (xt)) satisfies
∞∑

h=−∞

|γ(h)| <∞,

then

γ(h) =

∫ 1
2

− 1
2

e2πiωhf (ω)dω, h = 0,±1,±2, . . . ,

where

f (ω) =
∞∑

h=−∞

γ(h)e−2πiωh, −1/2 ≤ ω ≤ 1/2.

• Definition: f (ω) is the spectral density function of (xt). 14



Spectral Density II

Property 4.2: If γ(h) (of a stationary process (xt)) satisfies
∞∑

h=−∞

|γ(h)| <∞,

then

γ(h) =

∫ 1
2

− 1
2

e2πiωhf (ω)dω, h = 0,±1,±2, . . . ,

where

f (ω) =
∞∑

h=−∞

γ(h)e−2πiωh, −1/2 ≤ ω ≤ 1/2.

In words:

• “If the covariance function γ(h) is absolutely summable, then

the spectral distribution F (ω) is absolutely continuous. The

spectral density f (ω) is the density of the spectral distribution.

• “The spectral density f (ω) has a Fourier series representation

with coefficients given by the covariance function γ(h)”.
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Properties of Spectral Density, I

• Nonnegativity:

fx(ω) ≥ 0, ω ∈ (−1/2, 1/2).

• Decomposition of variance

Var(xt) = γx(0) =

∫ 1
2

− 1
2

fx(ω)dω = Fx(1/2).

• In words: “Spectrum is the variance explainable by sinusoids at

frequency ω”. “This can never be negative”, “It sums to the total

variance of the stochastic process”.
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Relation to Periodogram

• Suppose (xt) is stationary with absolutely summable γx(h).

fx(ω) = lim
n→∞

E [In (bnωc/n)] , ω ∈ (0, 1/2).

• Suppose that xt is also a Gaussian process. Then, approximately

In(j/n)
approx∼ Exp (fx(j/n)) , j = 0, 1, . . . , n/2.

Equivalently (Property 4.6),

2In(j/n)

fx(j/n)

approx∼ χ2
2, , j = 0, 1, . . . , n/2.

• In words: “Spectrum gives typical size of random variable

periodogram.”
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Example 4.13: Priodogram of SOI

# n = 480, Delta = 1/12

par(mfrow=c(2,1))

soi.per = mvspec(soi , log="no"); abline(v=1/4, lty=2)

Significant power at ω = 1∆ and ω = ∆/4, where ∆ = 1/12.
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Example 4.13: Priodogram of SOI (cont’d)

From
2In(j/n)

fx(j/n)

approx∼ χ2
2,

approximate 100(1− α)% confidence interval for fSOI (ω) is found by

2In(bnωc/n)

χ2
2(1− α/2)

≤ fSOI (ω) ≤ 2In(bnωc/n)

χ2
2(α/2)

.

# Values of SOI ’s periodogoram at peaks:

soi.per$spec [40] # 0.97223; soi pgram at freq 1/12 = 40/480

soi.per$spec [10] # 0.05372; soi pgram at freq 1/48 = 10/480

al = .05

# conf intervals - returned value:

U = qchisq(al/2,2) # 0.05063

L = qchisq(1-al/2,2) # 7.37775

2*soi.per$spec [40]/L # 0.26355

2*soi.per$spec [40]/U # 38.40108

2*soi.per$spec [10]/L # 0.01456

2*soi.per$spec [10]/U # 2.12220

Cannot establish significance of peak at ω = ∆/4!

Next Lecture: Better estimate by smoothing the periodogram. 19



Properties of the Spectral Density, II

• If (wt) is Gaussian white noise, then

fw (ω) = σ2
w , ω ∈ (−1/2, 1/2).

• In words: “In a white noise...”

• “all ordinates of the periodogram have the same expectation”.

• “the expectation is the variance of the process”.

• “all frequencies are present in equal intensity”.
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Newton & Spectrum, I

21



Newton & Spectrum, II
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At Last: Meaning of the Term “White Noise”

• Newton’s Prism:

White light is made of colored light, in equal intensities.

• Spectrum analysis:

White noise is made of sinusoids of different frequencies, in equal

intensities.

• Optical analogy:

”Colored Light”↔ “Sinosuid”

• Acoustic analogy:

”Pure Tones” (e.g. middle A)↔ “Sinosuid”(e.g. 440Hz)

Acoustic “White Noise” is a superposition of all possible pure

tones, in equal, random amounts.
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Noise Color

The optimal analogy suggests the following terminology:

• Pink noise:

fx(ω) is large near ω = 0, i.e., xt is ’built from’ lower frequencies.

• Blue noise:

fx(ω) is large near ω = 1/2, i.e., (xt) is ‘built from’ higher

frequencies.

• https://en.wikipedia.org/wiki/Colors_of_noise
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Properties of Spectral Density, III

• Property 4.4 Spectral density of ARMA. (xt) is ARMA(p, q):

fx(ω) = σ2
w

∣∣θ(e−2πiω)
∣∣2

|φ(e−2πiω)|2
,

where:

• φ(z) = 1−
∑p

k=1 φkz
k is AR polynomial.

• θ(z) = 1 +
∑q

k=1 θkz
k is MA polynomial.

• Example: (xt) is MA(1),

fx(ω) = σ2
w

∣∣1 + θe−2πiω
∣∣2 = σ2

w

(
1 + 2θ cos(2πω) + θ2

)
• Example: (xt) is AR(1),

fx(ω) =
σ2
w

1 + 2φ cos(2πω) + φ2

25



Possible “Colors” of MA(1)

• Example: (xt) is MA(1),

fx(ω) = σ2
w

∣∣1 + θe−2πiω
∣∣2 = σ2

(
1 + 2θ cos(2πω) + θ2

)
• Pick θ = 1:

fx(ω) = 2 + 2 cos(2πω)

(’Pink’ Noise)
−0.4−0.2 0 0.2 0.4

0

5

10

15

ω
|A
(ω

)|2
• Pick θ = −1:

fx(ω) = 2− 2 cos(2πω)

(’Blue’ Noise) −0.4−0.2 0 0.2 0.4
0

5

10

15

ω

|A
(ω

)|
2
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Possible “Colors” of AR(1)

• Example: (xt) is AR(1),

fx(ω) =
σ2

1 + 2θ cos(2πω) + θ2

• Pick φ = 1− ε, ε > 0 tiny (high positive correlation):

fx(ω) =
σ2
w

1+(1−ε)2−2(1−ε) cos(2πω)

(’Red’ Noise) −0.4−0.2 0 0.2 0.4
0

10

20

30

ω

|A
(ω

)|
2

• Pick φ = −(1− ε), ε > 0 tiny (high negative correlation):

fx(ω) =
σ2
w

1+(1−ε)2+2(1−ε) cos(2πω)

(’Violet’ Noise) −0.4−0.2 0 0.2 0.4
0

10

20

30

ω

|A
(ω

)|
2
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Example 4.7: Spectrum of AR(2)

xt − xt−1 + .9xt−2 = wt , σ2
w = 1.

φ(z) = 1− z + .9z2. θ(z) = 1. From Property 4.4

fx(ω) =
∣∣φ (e−2πiω)∣∣−2 =

∣∣1− e−2πiω + .9e−4πiω
∣∣−2

= (2.81− 3.8 cos(2πω) + 1.8 cos(4πω))−1
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Linear Filters and Spectral Density, I

• Definition: Linear filtering of (xt) to produce (yt)

yt =
∞∑

j=−∞

ajxt−j ,
∞∑

j=−∞

|aj | <∞.

“(yt) is the convolution of xt and (at)”.

• Definition: (at)t∈Z is the filter’s impulse response function.

• Definition: The filter’s frequency response function is

A(ω) ≡
∞∑

j=−∞

aje
−2πiωj .

• Property 4.3: If (xt) has spectrum fx(ω), then

fy (ω) = |A(ω)|2fx(ω).
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Linear Filters and Spectral Density, II

• Example: Differencing

yt = ∇xt

• Frequency response

A(ω) = 1− e−2πiω.

• Relation between spectra

fy (ω) = |A(ω)|2 fx(ω) =
∣∣∣1− e−2πiω

∣∣∣2 fx(ω) = 2 (1− cos (2πω))2 fx(ω).

• Example: xt is white noise with intensity σ2:

fy (ω) = |A(ω)|2σ2 = 2 (1− cos (2πω))2 σ2

−0.4−0.2 0 0.2 0.4
0

5

10

15

ω

|A
(ω

)|2
“Differencing white noise creates a bluish noise.”
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Linear Filters and Spectral Density, III

• Example: Symmetric Moving Average:

(at) =

(
. . . , 0,

1

5
,

1

5
,

1

5
,

1

5
,

1

5
, 0, . . .

)
yt =

∞∑
j=−∞

ajxt−j =
1

5
(xt−2 + xt−1 + xt + xt+1 + xt+2) .

• Frequency response:

A(ω) =
1

5
[1 + 2 cos(2πω) + 2 cos(4πω)]

xt is white noise of intensity σ2:

fy (ω) = |A(ω)|2σ2

−0.4−0.2 0 0.2 0.4
0

0.5

1

ω

|A
(ω

)|2

• “Moving average of white noise creates a pinkish noise.”
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Cross-Spectra



Cross-Covariance

• Recall: The cross-covariance of two stationary processes (xt) and

(yt) is

γxy (h) = Cov(xt+h, yt).

• Example: Delay + noise:

yt = a · xt−d + wt , (xt) is stationary

γxy (h) = Cov(xt+h, a · xt−d + wt)

= a · Cov(xt+h, xt−d) = aγx(h + d).
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Cross-Spectral Density

• Definition: For two stationary processes (xt) and (yt), suppose that

∞∑
h=−∞

|γxy (h)| <∞.

Then the Fourier series

fxy (ω) =
∞∑

h=−∞

γxy (h)e−2πiωh,

defines a continuous complex-valued function on (−1/2, 1/2),

denoted the cross-spectral density.

• γxy (h) can be recovered from

γxy (h) =

∫ 1
2

− 1
2

e2πiωhfxy (ω)dω, h = 0,±1,±2, . . . .

(Fourier coefficients of fxy (ω))
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Properties of Cross-Spectral Density

• Warning: fxy (ω) is, in general, complex-valued .

• Real/Imaginary Decomposition:

fxy (ω) =

cospectrum︷ ︸︸ ︷
cxy (ω) −i

quadspectrum︷ ︸︸ ︷
qxy (ω) , ω ∈ (−1/2, 1/2).

• Hermitian Symmetry:

fxy (ω) = fyx(ω),

cxy (ω) = cyx(ω), qxy (ω) = −qyx(ω).

(why?)
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Coherence

• Definition: Squared Coherence function

ρ2xy (ω) =
|fyx(ω)|2

fx(ω)fy (ω)

(note similarity to correlation).

• Range:

0 ≤ ρ2xy (ω) ≤ 1.

• Interpretation:

• ρ = 1 implies perfect linear correlation at frequency ω.

• ρ = 0 implies uncorrelatedness at frequency ω.
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Cross-Spectral Density, Example

Delay + noise:

yt = xt−d + wt , (wt) is white noise independent of (xt).

• Cross-spectrum:

fxy (ω) =
∞∑

h=−∞

γxy (h)e−2πihω =
∞∑

h=−∞

γx(h + d)e−2πihω

=
∞∑

u=−∞
γx(u)e−2πi(u−d)ω = e2πidω

∞∑
u=−∞

γx(u)e−2πiuω

= e2πidωfx(ω).

• Amplitude of cross-spectrum:

|fxy (ω)| = |fx(ω)| = fx(ω).
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Cross-Spectral Density, Example (cont’d)

Delay + noise:

yt = xt−d + wt , (wt) white noise independent of (xt).

• Spectral density of (yt):

fy (ω) = fx(ω) + fw (ω) = fx(ω) + σ2
w

• Squared Coherence:

ρ2xy (ω) =
|fxy (ω)|2

fx(ω)fy (ω)
=
|fx(ω)|2

fx(ω)fy (ω)
=

fx(ω)

fx(ω) + σ2
w

• Signal-to-Noise Ratio (SNR):

SNR(ω) ≡ fx(ω)

fw (ω)
=

fx(ω)

σ2
w

≥ 0.

• Squared Coherence in terms of SNR:

ρ2xy (ω) =
SNR(ω)

1 + SNR(ω)
∈ [0, 1], ω ∈ (−1/2, 1/2).
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Linear Filters and Cross Spectra, I

• Recall: Linear filtering:

yt =
∞∑

h=−∞

ahxt−h,

where (at)t∈Z is absolutely summable ((at)t∈Z is the impulse

response of the filter).

• The spectral density of the filter’s output (Property 4.3):

fy (ω) = |A(ω)|2 fx(ω),

where

A(ω) =
∞∑

h=−∞

ahe
−2πiωh, ω ∈ (−1/2, 1/2).

• Q: What is the input-output cross-spectrum fxy (ω)?

• A: fyx(ω) = A(ω)fx(ω).
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Linear Filters and Cross Spectra, Example

• Example: Pure delay

yt = a · xt−d

• Frequency response

A(ω) = a · e−2πidω.

• Cross-spectrum:

fyx(ω) = a · e−2πidωfx(ω).

• Output spectrum

fy (ω) = a2 · fx(ω)

• Squared coherence

ρ2yx(ω) =

∣∣a · e−2πidω∣∣2
a2fx(ω) · fx(ω)

= 1.

“Time-delay does not affect correlation at frequency ω, for all

ω ∈ (−1/2, 1/2).”
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Linear Filters and Cross Spectra, Example 4.19

• Example: Three-point moving average

yt =
1

3
(xt−1 + xt + xt+1)

• Frequency response

A(ω) =
1

3
(1 + 2 cos(2πω)) .

• Cross-spectrum:

fyx(ω) =
1

3
(1 + 2 cos(2πω)) fx(ω).

(purely real!)

• Output spectrum:

fy (ω) =
1

9
(1 + 2 cos(2πω))2 fx(ω).

• Squared coherence:

ρ2xy =

∣∣ 1
3 (1 + 2 cos(2πω)) fx(ω)

∣∣2
fx(ω) · 19 (1 + 2 cos(2πω))2 fx(ω)

= 1.
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Recap

• Periodogram indicates the component of data variance

explainable by sinusoids at frequency j .

• The spectral density f (ω) has a Fourier series representation with

coefficients given by the covariance function γ(h).

• The spectral density gives typical size of random variable

periodogram.

• The cross-spectral density fxy (ω) has a Fourier series

representation with coefficients given by the cross covariance

function γxy (h).

• The spectral density and cross-spectral density play nicely with

linear filtering.

Next 1-2 Lectures:

• Spectral estimation.

• Frequency domain regression & principal components analysis. 41
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