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Genera Info

HW?2 is due today.
HW3 is out. Due Monday 11/2/2020.

Last chance to submit midquarter feedback (anonymously):
https:
//canvas.stanford.edu/courses/123058/quizzes/84145
(Canvas)

Additional guest lectures (Prophet, bootstrap)


https://canvas.stanford.edu/courses/123058/quizzes/84145
https://canvas.stanford.edu/courses/123058/quizzes/84145
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Sinusoidal Regression and
Periodogram



Sinusoid in Noise (Review)

o x; = Acos (2wt + ¢) + wy, where

e A is the amplitude.
e ¢ is the phase.
e w is the frequency index or the angular velocity.

e Linearization trick
B1 cos(2mwt) + Basin(2rwt) = Acos (2rwt + ¢)
e Fit using cos and sin (instead of A and ¢):

x¢ = By cos (2nwt) + Basin (2rwt) + wy.



Example 2.10: Signal Hidden in Noise (Review)

set.seed (1000)

z1 = cos(2%pi*1:500/50)
z2 = sin(2*pi*x1:500/50)
summary (fit <- 1lm(x~0+z1+z2))

# so you can reproduce these results
x = 2%cos (2%pi*1:500/50 +

par (mfrow=c(2,1));
lines(fitted(fit),

b3

.6xpi) + rnorm(500,0,5)

# zero to exclude the intercept

ylab=expression(hat(x)))

tsplot(x); tsplot(x, col=8,
col=2)
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How to Determine Periodicity? (Review)

e By Trial and Error:

Period=30, R*2=0.000257
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How to Determine Periodicity? (Review)

e OLS regression coefficients
Bi(i/n) = thcos (2mjt/n), Bali/n) = thsm (2mjt/n)
e Measure of power in fitted model at frequency w = j/n:
P(j/n) = BE(j/n) + B5(i/n)
e R? at frequency j:

. P(/n)
N =T PG



Periodogram, | (Review)

Discrete Fourier Transform (aka Fast Fourier Transform):

d(j/n) = er*%’w" j=0,...,n—1, i=+-1.

Computable in O(n log(n)) flops. Standard in digital signal
processing.

e Definition: Periodogram

h(i/n) = 1d(i/n)|?

Measure of power in fitted model at frequency w = j/n:

P(j/n) = U/n)



Periodogram, Il (Review)

n = 500

x = 2%cos(2*%pi*1:n/50 + .6%pi) + rnorm(mn,0,5)

s = fft(x)/sqrt(n)

freq = (0:(n-1) )/n

plot(freq, abs(s)"2, ylab="|d(j/n)| 2", type="ol",
xlab="freq (j/n)’, main=’Periodogram of sinusoid + noise’)

Periodogram of sinusoid + noise
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Properties if Periodogram |

e Nonnegativity
I(/n)>0, j=0,...,n—1

e Decomposition of variance: Let n be odd and set m = (n —1)/2.

n

=13 (g% = = > hii/n)
j=1

j=1
(“Pythagorean theorem” or “Parseval’s identity").

e Fraction of variance explained by sinusoids
, In(i/n)
R? = :

G/m =2

e In words: "Periodogram indicates the component of data

variance explainable by sinusoids at frequency j”. “This can
never be negative”. "It leverages to the total variance of the

signal”.

10



Properties of Priodogram I

e Let (w;) be Gaussian White Noise. Assume n is odd.

(i/n) % Exp(l), j=1,...,(n—1)/2,

where Exp(u) is the exponential distribution with mean p.

X ~Exp(p) & Fx(t) =Pr(X <t)=1—e"* t>0.

In words: “Periodogram of a Gaussian white Noise is an
Exponential White Noise" .

e Mirroring effect: /(j/n)=1(1—j/n),j=0,...,n—1

11



Periodogram of White
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Spectral Density



Example 4.4: A Periodic Stationary Process

e Consider

x¢ = wy cos(2mwot) + wa sin(2mwot), Wi, wy N(0,0?).
Every realization of the process is periodic with period 1/wg.
We have

2
Yx(t + h, t) = % cos(27mwo(t + h)) cos(2mwpt)

2
+ % sin(2mwo(t + h)) sin(2mwot)

o2 : o2 :
— 0_2 COS(27T'LUOh) — 5 e—27rlwoh_|_ 5 e27rlwoh :'Yx(h)
Write

1 0 w < —Wwo,
2 .
v (h) = / e?whgF (w), Fw)=140%/2 —wy<w < wo,

o2 w > wp-

Definition: F(w) is the spectral distribution function.

1
2
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Spectral Density |

o Property 4.1: If (x;) is stationary, there exists a unique monotonic
function F(w), called the spectral distribution function, with
F(—o0) = F(-1/2) =0, F(cx) = F(1/2) = v(0), and

1

= [

1
2

e27riwhdl_-(w)

e Property 4.2: If v(h) (of a stationary process (x;)) satisfies

Z [v(h)] < oo,
h=—o00
then
:
fy(h):/ e?™whf(w)dw, h=0,+1,+2, ...,
1
2
where .
flw)y= Y A(he ™k —1/2<w<1/2.
h=—o00

e Definition: f(w) is the spectral density function of (x;).



Spectral Density |l

Property 4.2: If y(h) (of a stationary process (x;)) satisfies

> (k)] < oo,
h=—00

then .

2 .

v(h) = / > whf (W) dw, h=0,+1,42, ...,
1

-3

where .
flw)= > y(he ™" —1/2<w<1/2.

h=—oc0

In words:

e "If the covariance function ~(h) is absolutely summable, then
the spectral distribution F(w) is absolutely continuous. The
spectral density f(w) is the density of the spectral distribution.

e "The spectral density f(w) has a Fourier series representation

with coefficients given by the covariance function ~y(h)".
15



Properties of Spectral Density, |

e Nonnegativity:

e Decomposition of variance

(NI

Var(x:) = 7x(0) = /_ fi(w)dw = Fi(1/2).

1
2
e In words: “Spectrum is the variance explainable by sinusoids at

frequency w". “This can never be negative”, “It sums to the total
variance of the stochastic process”.

16



Relation to Periodogram

e Suppose (x;) is stationary with absolutely summable ~,(h).

fi(w) = lim E[l,(|nw]/n)], w € (0,1/2).

n—oo

e Suppose that x; is also a Gaussian process. Then, approximately
I(j/n) PR Exp (£.(j/n)),  j=0,1,...,n/2.
Equivalently (Property 4.6),

2/,,(]//7) apﬁcox X2
fiGi/n) 2

e In words: “Spectrum gives typical size of random variable
periodogram.”

j=0,1,...,n/2.

17



Example 4.13: Priodogram of SOI

# n = 480, Delta = 1/12
par (mfrow=c(2,1))
soi.per = mvspec(soi, log="no"); abline(v=1/4, 1lty=2)

Serles: soi
Raw Perlodogram

spectrum

Significant power at w = 1A and w = A/4, where A = 1/12.

18



Example 4.13: Priodogram of SOI (cont’d)

From )
2/,,(_]/”) approx X2
feli/n) :
approximate 100(1 — «)% confidence interval for fso;(w) is found by
2l(|nw]/n 2l([nw]/n
b(lel/m) gy 2l /n)
X5(1 = a/2) X3(/2)
# Values of SOI’s periodogoram at peaks:

soi.per$spec[40] # 0.97223; soi pgram at freq 1/12 40/480
soi.per$spec[10] # 0.05372; soi pgram at freq 1/48 = 10/480

al = .05
# conf intervals - returned value:
U = qchisq(al/2,2) # 0.05063

L = qchisq(1-al/2,2) # 7.37775
2*soi.per$spec[40] /L # 0.26355
2*soi.per$spec [40] /U # 38.40108
2*soi.per$spec[10] /L # 0.01456
2*soi.per$spec[10]1/U # 2.12220

Cannot establish significance of peak at w = A /4!
Next Lecture: Better estimate by smoothing the periodogram. 19



Properties of the Spectral Density, Il

e If (w;) is Gaussian white noise, then
fu(w) =02, we(-1/2,1/2).

e In words: “In a white noise...”
e “all ordinates of the periodogram have the same expectation”.
e “the expectation is the variance of the process”.
e “all frequencies are present in equal intensity”.

Reataton- Restation-2 Restation:3
2 l 2
Fei M T P
< W JUN . .
Yo s o 10 08 o5 o s oa 10 08 os o v o 10 0n o5
- - -
R Reatationss Restations
g : H
52 £ £
L F el A
g 1r 5 o W U
o s o 10 0n o5 o s oa 10 08 o5 o s 0 10 08 o5
- - -
Reatation.? Reatations Restationss
8 3
£. £s £
< 1WA M 21
o s 0 10 0n o5 o s o 10 0n o5 Yo s o 10 08 o5

Pr— Pr— Pr—



Newton & Spectrum,

Newton and the Color Spectrum

Our modern understanding of light and
color begins with Isaac Newton (1642-
1726) and a series of experiments that
he publishes in 1672. He is the first to
understand the rainbow — he refracts
white light with a prism, resolving it into
its component colors: red, orange,
yellow, green, blue and violet.

In the late 1660s, Newton starts
experimenting with his ’celebrated
phenomenon of colors.’ At the time,
people thought that color was a mixture
of light and darkness, and that prisms

The diagram from Sir Isaac Newton’s

crucial experiment, 1666-72. A ray of light
is divided into its constituent colors by the
first prism (left), and the resulting bundle

of colred rays is reconstituted into white

light by the second.

@ EnLARGE

colored light. Hooke was a proponent of this theory of color, and had a scale that went from brilliant red, which was
pure white light with the least amount of darkness added, to dull blue, the last step before black, which was the
complete extinction of light by darkness. Newton realizes this theory was false.

21



Newton & Spectrum, Il

1st Prism




At Last: Meaning of the Term “White Noise”

Newton’s Prism:
White light is made of colored light, in equal intensities.

Spectrum analysis:
White noise is made of sinusoids of different frequencies, in equal
intensities.

Optical analogy:
"Colored Light" <> “Sinosuid”
Acoustic analogy:

"Pure Tones” (e.g. middle A) <+ “Sinosuid” (e.g. 440Hz)

Acoustic “White Noise” is a superposition of all possible pure
tones, in equal, random amounts.

23



Noise Color

The optimal analogy suggests the following terminology:
e Pink noise:
fi(w) is large near w = 0, i.e., x; is 'built from’ lower frequencies.

e Blue noise:
fr(w) is large near w = 1/2, i.e., (x;) is ‘built from’ higher
frequencies.

e https://en.wikipedia.org/wiki/Colors_of_noise

24


https://en.wikipedia.org/wiki/Colors_of_noise

Properties of Spectral Density, 111

e Property 4.4 Spectral density of ARMA. (x;) is ARMA(p, q):

2

9(6727riw)|

Y
e
where:
o $(z) =1-3"_ ¢xz"is AR polynomial.
e 0(z) =1+> 7, 0kz" is MA polynomial.
o Example: (x;) is MA(1),

fi(w) =02 |1+ 9e727”"”|2 = 0%, (1 + 26 cos(27w) + 67)

e Example: (x:) is AR(1),

2
Ow

hlw) = 1+ 2¢ cos(2mw) + ¢2

25



Possible “Colors” of MA(1)

o Example: (x;) is MA(1),
f(w) =05 |1+ 9e‘2’”"”|2 = 0° (1 + 26 cos(27w) + 6?)

e Pick § =1:
15} R
= 10f 1
3
fi(w) =2+2cos(2rw) = s} :
0 1 1 1
(,Pink, Noise) 70_44).23 0204
e Pick = —1:
15P A
= 10} .
3
fi(w) =2 —2cos(2rw) = s} .
0

('Blue’ Noise)

—04-020 0204

w
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Possible “Colors” of AR(1)

o Example: (x;) is AR(1),

o2

f;( pr—
() 1+ 26 cos(2mw) + 62
e Pick ¢ =1 —¢, € > 0 tiny (high p05|t|ve correlatlon

30| ]
= 20 ]
o2
fX(w) = 1+(1fe)272(lwfe) cos(2mw) 10 i
0

(’Red’ Noise) —04-020 0.2 04

|A@)?

e Pick ¢ = —(1 —€), € > 0 tiny (high negative correlation)'

A(w)[?

30
= 20}
fX(w) = 1+(1—e)2+2((71W—e)cos(27rw) - 1op

0
('Violet' Noise) 0402 0 0204

27



Example 4.7: Spectrum of AR(2)

X¢ — Xe—1 + .9X¢_0 = Wy, 05,, =1.
NN /\ A N
sl | [ | ' , | ‘ M
i 'v\f\“' \ \/ JW\/ | MN

922, §(z) = 1. From EProperty 4.4
—2miw) |2 —2miw —Amiw| 2

f(w) = ¢ (e7™)| "= |1 —e 2™ 4 .9e~ 4|

= (2.81 — 3.8 cos(27w) + 1.8 cos(4mw))

<
—
N
SN—r
Il
= arima.sim(list(
\
N
+

arma.spec(ar=c(1,-.9), log="no’}

spectrum
40 B0 120

0

frequency



Linear Filters and Spectral Density, |

e Definition: Linear filtering of (x;) to produce (y;)
oo o
Yr = Z ajXt—j, Z \aj| < 0.
j=—s0 j=—oo

“(y¢) is the convolution of x; and (a;)".
e Definition: (a;):ez is the filter's impulse response function.

e Definition: The filter's frequency response function is

Alw) = Z aje” 2Tl

j=—o0

e Property 4.3: If (x;) has spectrum f,(w), then

29



Linear Filters and Spectral Density, 1l

e Example: Differencing
ye = Vxy

e Frequency response
Aw)=1—e 2",

e Relation between spectra
.2
f(w) = JA@)P f(w) = [1 = e[ fi(w) = 2(1 — cos (27w))? £u(w).

e Example: x; is white noise with intensity o
f,(w) = |A(w)[?0? = 2 (1 — cos (27w))? o2 151 g
10l |

o
=
=
=

51 N

0

—0.4-020 0204
w

“Differencing white noise creates a bluish noise.”



Linear Filters and Spectral Density, 11l

e Example: Symmetric Moving Average:

11111
=!...,0,=, =, =, =, = 0,...
(at) ( ) 757575a5755 ) )

o
1
ye= Z 4Xe—j = ¢ (Xe—2 + Xe—1 + Xe + Xe11 + Xet2) -

Jj=—0o0
e Frequency response:

Aw) = % [1 + 2 cos(2mw) + 2 cos(4mw)]

1 |-

x: is white noise of intensity 0% o
3

= 05}
fy(w) = |A(w) P <

0—0.4—0.2 0 0204

w

e “Moving average of white noise creates a pinkish noise.”

31



Cross-Spectra




Cross-Covariance

e Recall: The cross-covariance of two stationary processes (x;) and
(re) is
’ny(h) = COV(Xt+hvyt)~

e Example: Delay + noise:

Ve =3 Xe—qg + Wi, (x:) is stationary

’YXy(h) = Cov(Xeqh,a- Xe—q + We)

= a- Cov(Xepn, Xe—d) = ayx(h+ d).

32



Cross-Spectral Density

e Definition: For two stationary processes (x;:) and (y;), suppose that

Z [ (h)] < o0.

h=—o0

Then the Fourier series

oo

fy(w) = D py(h)e 2R,

h=—o0

defines a continuous complex-valued function on (—1/2,1/2),
denoted the cross-spectral density.

® 7, (h) can be recovered from

1
L
OES / e>mwhf (w)dw, h=0,£1,+2,....

[N

(Fourier coefficients of £, (w))

33



Properties of Cross-Spectral Density

e Warning: f,(w) is, in general, complex-valued .

¢ Real/Imaginary Decomposition:

cospectrum quadspectrum

fy(W) = (W) =1 ay(w) ,  we(=1/2,1/2)

e Hermitian Symmetry:

fo (W) = fix(w

Gy (W) = cyx(w), Gy (W) = —gyx(w).

~—

)



Coherence

e Definition: Squared Coherence function

) = @)

(note similarity to correlation).
e Range:
0 < phy(w) < 1.

e Interpretation:

e p =1 implies perfect linear correlation at frequency w.
e p = 0 implies uncorrelatedness at frequency w.

35



Cross-Spectral Density, Example

Delay + noise:

Vi = Xt_d + Wi, (w) is white noise independent of (x;).

e Cross-spectrum:

fxy(w) — Z ,}/Xy(h)efbrihw — Z ,Yx(h+d)ef27rihw
h=—occ h=—o00
— Z ,yx(u)ef%ri(ufd)w:ehridw Z ,yx(u)ef27riuw
u=—0o0 u=—0o0

— eZ‘n’idw f;(w)
e Amplitude of cross-spectrum:

|fy ()] = [f(w)] = fi(w).

36



Cross-Spectral Density, Example (cont’d)

Delay + noise:

Vi = Xe—d + Wi, (wt) white noise independent of (x;).

Spectral density of (y;):
fy(w) = £(w) + fulw) = f(w) + o,
Squared Coherence:
L ) G 5 A )
Y f(Wfy(w) (@ (w)  flw)+of
Signal-to-Noise Ratio (SNR):

SNR(w) = 2@) _ K@)

(@ o

N

Squared Coherence in terms of SNR:
SNR(w)

phy(w) = TTSNR(@) © 0,1, we(-1/2,1/2).

37



Linear Filters and Cross Spectra, |

e Recall: Linear filtering:
o]
e = Z anXt—h,
h=—o00

where (at)tez is absolutely summable ((at)tcz is the impulse
response of the filter).
e The spectral density of the filter's output (Property 4.3):

fy(w) = [A@)I* fi(w),

where -
Aw)= Y ape®™h  we(-1/2,1/2).

h=—o0c0

e Q: What is the input-output cross-spectrum f,,(w)?

o A f(w) = A(w)fi(w).

38



Linear

Filters and Cross Spectra, Example

Example: Pure delay

Yt = a- Xt—d

Frequency response
A(OJ) —3- e—dew.

Cross-spectrum:
Output spectrum

Squared coherence

B |a_e727ridw|2 B

Pﬁx(w) T Ph(0) ()

“Time-delay does not affect correlation at frequency w, for all
we (=1/2,1/2)."

39



Linear Filters and Cross Spectra, Example 4.19

e Example: Three-point moving average

1
Yt = § (Xt—l + X: + Xt+1)

e Frequency response

A(w) = = (1 + 2cos(27w)) .

OO\H

e Cross-spectrum:

fux(w) = = (14 2 cos(27w)) f(w).

W =

(purely real!)
e Output spectrum:
fo(w) = é (1+ 2 cos(27w))? £y (w).
e Squared coherence:
|1 (1 4 2cos(27w)) fu(w)|?

. =1
f(w) - 3 (1+ 2cos(2rw))? fulw)

2
pxy -
40



Recap

e Periodogram indicates the component of data variance
explainable by sinusoids at frequency j.

e The spectral density f(w) has a Fourier series representation with
coefficients given by the covariance function ~(h).

e The spectral density gives typical size of random variable
periodogram.

e The cross-spectral density f,,(w) has a Fourier series
representation with coefficients given by the cross covariance
function ~,, (h).

e The spectral density and cross-spectral density play nicely with
linear filtering.

Next 1-2 Lectures:
e Spectral estimation.
e Frequency domain regression & principal components analysis.

41
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