STATS 207: Time Series Analysis Autumn 2020

Lecture 1: Course outline, Examples of Time Series Data, Models for Time Series Data.

Dr. Alon Kipnis

Slides credit: David Donoho, Dominik Rothenhäusler September 14th 2020

- 1. Course outline and organizational matters.
- 2. Examples of time series data.
- 3. Tentative list of topics.
- 4. Models for time series Data.

Course outline and organizational matters

Organizational matters

- Instructor: Alon Kipnis
- Lectures: 10:00 11:20 am Mon, Wed, using Zoom.
- Teaching Assistant: Zijun Gao and Anav Sood.
- Course Staff Email Address: stats207-aut2021-all@lists.stanford.edu
- Online Office Hours (aka Office Chats, aka Coffee Breaks): 11:20 - 12:20 Mon, Wed, using Zoom. https://stanford.zoom.us/my/kipnisal
- TA Online Office Hours: Details will be posted on Canvas.

- 1. Lecture material on Canvas (slides, sample R code, homework etc.)
- Other course-related announcements on Canvas (https://canvas.stanford.edu/)
- 3. Discussions on Piazza

(https://piazza.com/stanford/fall2020/stats207/home)

4. Home assignments and grades will be posted on **Gradescope** (https://www.gradescope.com/courses/173400)

- Online learning is new to this class.
- The quarter is shorter than usual (10 compared to 12 weeks).
- Let us know if you have suggestions on how to improve your learning experience.
- We are here to help. We look forward to seeing you in our virtual office hours.

- Lectures will be recorded. They will be available on Canvas.
- I strongly encourage you to attend the class live.

- West-coast time (aka PT, usually UTC-08:00)
- If you are currently not in the US, please let us know what time zone you're in. You can reach us at stats207-aut2021-all@lists.stanford.edu .
- Depending on this feedback, we may change some of our office hours to address accessibility issues due to time zone differences.

- Elementary statistics at level of STATS 200 (correlation, maximum likelihood, least squares, confidence intervals,...)
- Elementary probability at level of STAT 116 (random variables, independence, correlation, joint distributions, ...)
- Some background on **complex numbers** (not mandatory)
- Basic programming skills in **R** (not mandatory)

Textbook and R

• The main textbook:

Shumway & Stoffer, "Time Series Analysis and its Applications" (henceforth [Shumway & Stoffer]).

- Available at http://www.stat.pitt.edu/stoffer/tsa4 (visit website now!)
- All figures in the book are reproducible at the book website.

- The programming language of the course is **R**. Available at http://cran.r-project.org
- You may use a different programming language at your own risk!
- Why you should use **R** for data science:
 - 'ggplot'
 - 'tidyverse'

Homeworks

- Constitute 80% of the final grade.
- Mix of theoretical (pen and paper) and computer exercises.
- Will be posted posted every two weeks.
- All homework needs to be submitted via Gradescope.
- Homework collaboration policy:
 - Every student must first attempt all problems individually.
 - You may discuss a homework assignment with up to two classmates.
 - Each student must write up his/her **own** solutions individually and explicitly **name any collaborators** at the top of the homework.
- **Regrade requests** must be submitted within **one week** after grading has been published.
- Regrading requests are submitted via Gradescope.

- **Grading:** 80% regular homework assignments, 20% take home exam.
- Take-home exam:
 - About 2 hours time-limit.
 - Can access at your free time during the last week of classes 11/16-11/20.
 - Ideology: easy to get near perfect grade if you review class material and home assignments **before** starting the exam.

- We encourage discussions between classmates, either on Piazza or elsewhere.
- We encourage you to attend our virtual office hours.
- Please send us interesting related dataset and articles so we can share with everyone ('Medium' and 'Toward Data Science' are nice sources).

Examples of Time Series Data

- Johnson and Johnson quarterly earning
- Global Temperature Deviations
- Speech Data
- Dow-Jones Industrial Average
- Fish Population and El-Ninõ
- fMRI Data
- Daily New Cases of Covid-19
- Air Quality Data

Example 1.1

Example 1.1 in [Shumway & Stoffer] : Johnson and Johnson earnings

- N = 84 data points.
- Earning per share of JnJ stock.
- Quarterly numbers 21 years of data.
- The data:

year	Qtr1	Qtr2	Qtr3	Qtr4
1960	0.71	0.63	0.85	0.44
1961	0.61	0.69	0.92	0.55
1962	0.72	0.77	0.92	0.60
1963	0.83	0.80	1.00	0.77
1964	0.92	1.00	1.24	1.00
÷	÷	÷	÷	:
1980	16.20	14.67	16.02	11.61

Example 1.1: The Plot

plot(jj, type="o", ylab="Quarterly Earnings per Share", main="Example 1.1")

Code of all the examples from [Shumway & Stoffer] are available at https://www.stat.pitt.edu/stoffer/tsa4/Rexamples.htm

Example 1.2: Global Temperature Deviations

Example 1.3: Speech Data

Speech recording of the syllable aaa...hhh sampled at 10,000 points per second with n = 1020 points:

Example 1.4: Dow-Jones Daily Returns

Example 1.5: Fish Population and El-Ninõ

Southern Oscillation Index

Example 1.6: fMRI Data

Example: Daily New Cases of Covid-19 in Santa Clara County

Data: Santa Clara County Covid-19 Cases Dashboard https: //www.sccgov.org/sites/covid19/Pages/dashboard-cases.aspx

Example: Air Quality

urpleAir.com

Source: PurpleAir, LLC https://www.purpleair.com/map?opt=1/mAQI/a10/cC0#12.43/37.42184/-122.17378

- Average Happiness for Twitter http://hedonometer.org/timeseries/en_all/
- Google Trends https://trends.google.com/trends/explore? date=all&geo=US&q=Time%20Series,%2Fm%2F041m_j

- Scalar, bivaraite, vectorial
- Regular, irregular
- Sampling frequency: yearly/quarterly/monthly/daily/.../millisecond/.../microsecond/...
- Structures:
 - Trend
 - Seasonality
 - Periodicity
- Autocorrelation and Cross-correlation (TBD)

Simple random sampling:

n independent, identically dist. observations.

Time series:

n not independent and/or identically dist. observations.

 $\Rightarrow \text{Learn population distribution}$ as $n \rightarrow \infty$. \Rightarrow Explore serial structure to learn dependence as $n \rightarrow \infty$.

Primary objectives in time series analysis:

- Develop **mathematical models** that provide plausible descriptions for sample time series data.
- Develop estimation and prediction for these models.

Tentative list of topics

Tentative list of topics

- 1. Models for time series data: mean, autocorrelation, cross-correlation functions, stationarity, estimation of correlation
- 2. **Trend and seasonality**: trend and seasonality models, heteroscedasticity, variance stabilization
- 3. Time series regression: classical regression in the TS context, model complexity
- 4. **Prediction and estimation** estimating model parameters, prediction, partial autocorrelation function
- 5. Non-linear models: ARCH, GARCH, stochastic volatility (possibly a guest lecture)
- 6. **Spectral Analysis**: periodogram, spectral density, linear filtering, cross-spectra
- 7. **High-dimensional time-series models**: VAR, VARMA, **Prophet** (probably a guest lecture)
- 8. **State-space models**: Linear state-space models, prediction, Kalman Filter

The full syllabus is on Canvas

Models for Time Series Data

Definition: A (discrete-time) stochastic process is a set of random variables indexed by $\mathbb{N} = \{1, 2, ...\}$. Equivalent symbols:

$$(x_t), \{x_t\}_{t=1,2,...}, \{x_t\}_{t\in\mathbb{N}}$$

Definition: The *realization* of a stochastic process are the observed values (sample).

We use the term *time series* to indicate one of three object (the interpretation depends on the context):

- 1. A generic stochastic process
- 2. A particular realization of the stochastic process
- 3. A data set with one measurement per unit time

White Noise and Moving Average

White noise process (w_t): w_t ^{iid} ∼ P for some distribution P with mean 0 and variance σ².

Important special case: $P = \mathcal{N}(0, \sigma^2)$ (white Gaussian noise).

• Moving average. For example

$$v_t = \frac{1}{3}(w_{t-1} + w_t + w_{t+1}),$$

where w_t is Gaussian noise.

White Noise and Moving Average

The code:

```
w = rnorm(500,0,1) # 500 N(0,1) variates
v = filter(w, sides=2, rep(1/3,3)) # moving average
par(mfrow=c(2,1)) # stack two figures in a row
plot.ts(w, main="white noise")
plot.ts(v, ylim=c(-3,3), main="moving average")
```


• Auto-regressive processes. For example

$$x_t = 0.9x_{t-1} + w_t,$$

plus initial conditions.

• Random Walk (special case of an auto-regressive process)

$$x_t = x_{t-1} + w_t$$

or, with drift,

$$x_t = x_{t-1} + 0.2 + w_t.$$

The Code

Autoregression:

```
w = rnorm(550,0,1) # 50 extra to avoid startup problems
x = filter(w, filter=c(1,-.9), method="recursive")[-(1:50)]
plot.ts(x, main="autoregression")
```


The Code

Random Walk:

```
set.seed(154) # so you can reproduce the results
w = rnorm(200); x = cumsum(w) # two commands in one line
wd = w +.2; xd = cumsum(wd)
tsplot(xd, ylim=c(-5,55), main="random walk", ylab="")
lines(x, col=4)
abline(h=0, col=4, lty=2)
abline(a=0, b=.2, lty=2)
```


Sinusoid in Noise

 $x_t = 2\cos(2\pi t/50 + 0.6\pi) + w_t$

```
cs = 2*cos(2*pi*(1:500)/50 + .6*pi)
w = rnorm(500,0,1)
par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)  # help(par) for info
tsplot(cs, ylab="", main = expression(x[t]==2*cos(2*pi*t/50+.6*pi)))
tsplot(cs + w, ylab="", main =
expression(x[t]==2*cos(2*pi*t/50+.6*pi)+N(0,1)))
tsplot(cs + 5*w, ylab="", main =
expression(x[t]==2*cos(2*pi*t/50+.6*pi)+N(0,25)))
```


Name	Example		
White noise	$w_t \sim \mathcal{N}(0,\sigma^2)$		
Moving Average	$x_t = (w_{t-1} + w_t + w_{t+1})/3$		
Autoregression	$x_t = x_{t-1} - 0.9x_{t-2} + w_t$		
Random Walk	$x_t = x_{t-1} + w_t$		
Sinusoid in noise	$x_t = 2\cos(2\pi t/50 + 0.6\pi) + w_t$		