STATS 207: Time Series Analysis Autumn 2020

Lecture 1: Course outline, Examples of Time Series Data, Models for Time Series Data.

Dr. Alon Kipnis

Slides credit: David Donoho, Dominik Rothenhäusler
September 14th 2020

Outline of first lecture

1. Course outline and organizational matters.
2. Examples of time series data.
3. Tentative list of topics.
4. Models for time series Data.

Course outline and organizational

 matters
Organizational matters

- Instructor: Alon Kipnis
- Lectures: 10:00-11:20 am Mon, Wed, using Zoom.
- Teaching Assistant: Zijun Gao and Anav Sood.
- Course Staff Email Address:
stats207-aut2021-all@lists.stanford.edu
- Online Office Hours (aka Office Chats, aka Coffee Breaks):

11:20-12:20 Mon, Wed, using Zoom.
https://stanford.zoom.us/my/kipnisal

- TA Online Office Hours: Details will be posted on Canvas.

Course pages

1. Lecture material on Canvas (slides, sample R code, homework etc.)
2. Other course-related announcements on Canvas
(https://canvas.stanford.edu/)
3. Discussions on Piazza
(https://piazza.com/stanford/fall2020/stats207/home)
4. Home assignments and grades will be posted on Gradescope
(https://www.gradescope.com/courses/173400)

COVID-19 and online learning

- Online learning is new to this class.
- The quarter is shorter than usual (10 compared to 12 weeks).
- Let us know if you have suggestions on how to improve your learning experience.
- We are here to help. We look forward to seeing you in our virtual office hours.

Recording

- Lectures will be recorded. They will be available on Canvas.
- I strongly encourage you to attend the class live.

Time Zone

- West-coast time (aka PT, usually UTC-08:00)
- If you are currently not in the US, please let us know what time zone you're in. You can reach us at stats207-aut2021-all@lists.stanford.edu .
- Depending on this feedback, we may change some of our office hours to address accessibility issues due to time zone differences.

Prerequisites:

- Elementary statistics at level of STATS 200 (correlation, maximum likelihood, least squares, confidence intervals,...)
- Elementary probability at level of STAT 116 (random variables, independence, correlation, joint distributions, ...)
- Some background on complex numbers (not mandatory)
- Basic programming skills in \mathbf{R} (not mandatory)

Textbook and R

- The main textbook:

Shumway \& Stoffer, "Time Series Analysis and its

 Applications" (henceforth [Shumway \& Stoffer]).- Available at http://www.stat.pitt.edu/stoffer/tsa4 (visit website now!)
- All figures in the book are reproducible at the book website.
- The programming language of the course is \mathbf{R}.

Available at http://cran.r-project.org

- You may use a different programming language at your own risk!
- Why you should use \mathbf{R} for data science:
- 'ggplot'
- 'tidyverse'

Homeworks

- Constitute 80% of the final grade.
- Mix of theoretical (pen and paper) and computer exercises.
- Will be posted posted every two weeks.
- All homework needs to be submitted via Gradescope.
- Homework collaboration policy:
- Every student must first attempt all problems individually.
- You may discuss a homework assignment with up to two classmates.
- Each student must write up his/her own solutions individually and explicitly name any collaborators at the top of the homework.
- Regrade requests must be submitted within one week after grading has been published.
- Regrading requests are submitted via Gradescope.

Assessment and grading:

- Grading: 80% regular homework assignments, 20% take home exam.
- Take-home exam:
- About 2 hours time-limit.
- Can access at your free time during the last week of classes 11/16-11/20.
- Ideology: easy to get near perfect grade if you review class material and home assignments before starting the exam.

Online Learning Community

- We encourage discussions between classmates, either on Piazza or elsewhere.
- We encourage you to attend our virtual office hours.
- Please send us interesting related dataset and articles so we can share with everyone ('Medium' and 'Toward Data Science' are nice sources).

Examples of Time Series Data

Examples

- Johnson and Johnson quarterly earning
- Global Temperature Deviations
- Speech Data
- Dow-Jones Industrial Average
- Fish Population and El-Ninõ
- fMRI Data
- Daily New Cases of Covid-19
- Air Quality Data

Example 1.1

Example 1.1 in [Shumway \& Stoffer] : Johnson and Johnson earnings

- $N=84$ data points.
- Earning per share of JnJ stock.
- Quarterly numbers 21 years of data.
- The data:

year	Qtr1	Qtr2	Qtr3	Qtr4
1960	0.71	0.63	0.85	0.44
1961	0.61	0.69	0.92	0.55
1962	0.72	0.77	0.92	0.60
1963	0.83	0.80	1.00	0.77
1964	0.92	1.00	1.24	1.00
\vdots	\vdots	\vdots	\vdots	\vdots
1980	16.20	14.67	16.02	11.61

Example 1.1: The Plot

Example 1.1

Example 1.1: The Code

```
plot(jj, type="o", ylab="Quarterly Earnings per Share",
    main="Example 1.1")
```

Code of all the examples from [Shumway \& Stoffer] are available at https://www.stat.pitt.edu/stoffer/tsa4/Rexamples.htm

Example 1.2: Global Temperature Deviations

Example 1.2

Example 1.3: Speech Data

Speech recording of the syllable aaa....hhh sampled at 10,000 points per second with $n=1020$ points:

Example 1.3

Example 1.4: Dow-Jones Daily Returns

Example 1.5: Fish Population and El-Ninõ

Example 1.6: fMRI Data

Thalamus \& Cerebellum

Example: Daily New Cases of Covid-19 in Santa Clara County

Data: Santa Clara County Covid-19 Cases Dashboard https:
//www.sccgov.org/sites/covid19/Pages/dashboard-cases.aspx

Example: Air Quality

Source: PurpleAir, LLC
https://www.purpleair.com/map?opt=1/mAQI/a10/cC0\#12.43/37.42184/-122.17378

Other Examples

- Average Happiness for Twitter http://hedonometer.org/timeseries/en_all/
- Google Trends https://trends.google.com/trends/explore? date=all\&geo=US\&q=Time\%20Series, \%2Fm\%2F041m_j

Attributes of Time Series

- Scalar, bivaraite, vectorial
- Regular, irregular
- Sampling frequency:
yearly/quarterly/monthly/daily/.../millisecond/../microsecond/...
- Structures:
- Trend
- Seasonality
- Periodicity
- Autocorrelation and Cross-correlation (TBD)

STATS 200 (Theory of Statistics) vs. STAT 207 (Time Series)

Simple random sampling:
n independent, identically dist. observations.
\Rightarrow Learn population distribution as $n \rightarrow \infty$.

Time series:
n not independent and/or identically dist. observations.
\Rightarrow Explore serial structure to learn dependence as $n \rightarrow \infty$.

Primary objectives in time series analysis:

- Develop mathematical models that provide plausible descriptions for sample time series data.
- Develop estimation and prediction for these models.

Tentative list of topics

Tentative list of topics

1. Models for time series data: mean, autocorrelation, cross-correlation functions, stationarity, estimation of correlation
2. Trend and seasonality: trend and seasonality models, heteroscedasticity, variance stabilization
3. Time series regression: classical regression in the TS context, model complexity
4. Prediction and estimation estimating model parameters, prediction, partial autocorrelation function
5. Non-linear models: ARCH, GARCH, stochastic volatility (possibly a guest lecture)
6. Spectral Analysis: periodogram, spectral density, linear filtering, cross-spectra
> 7. High-dimensional time-series models: VAR, VARMA, Prophet (probably a guest lecture)
7. State-space models: Linear state-space models, prediction, Kalman Filter

The full syllabus is on Canvas

Models for Time Series Data

Stochastic Processes

Definition: A (discrete-time) stochastic process is a set of random variables indexed by $\mathbb{N}=\{1,2, \ldots\}$. Equivalent symbols:

$$
\left(x_{t}\right), \quad\left\{x_{t}\right\}_{t=1,2, \ldots,}, \quad\left\{x_{t}\right\}_{t \in \mathbb{N}}
$$

Definition: The realization of a stochastic process are the observed values (sample).

We use the term time series to indicate one of three object (the interpretation depends on the context):

1. A generic stochastic process
2. A particular realization of the stochastic process
3. A data set with one measurement per unit time

White Noise and Moving Average

- White noise process $\left(w_{t}\right): w_{t} \stackrel{i i d}{\sim} P$ for some distribution P with mean 0 and variance σ^{2}.

Important special case: $P=\mathcal{N}\left(0, \sigma^{2}\right)$ (white Gaussian noise).

- Moving average. For example

$$
v_{t}=\frac{1}{3}\left(w_{t-1}+w_{t}+w_{t+1}\right),
$$

where w_{t} is Gaussian noise.

White Noise and Moving Average

The code:

```
W}=\operatorname{rnorm}(500,0,1) # 500 N(0,1) variates
v = filter(w, sides=2, rep (1/3,3)) # moving average
par(mfrow=c(2,1)) # stack two figures in a row
plot.ts(w, main="white noise")
plot.ts(v, ylim=c(-3,3), main="moving average")
```


Auto-Regression

- Auto-regressive processes. For example

$$
x_{t}=0.9 x_{t-1}+w_{t},
$$

plus initial conditions.

- Random Walk (special case of an auto-regressive process)

$$
x_{t}=x_{t-1}+w_{t}
$$

or, with drift,

$$
x_{t}=x_{t-1}+0.2+w_{t}
$$

The Code

Autoregression:

```
w = rnorm(550,0,1) # 50 extra to avoid startup problems
x = filter(w, filter=c(1,-.9), method="recursive")[-(1:50)]
plot.ts(x, main="autoregression")
```


The Code

Random Walk:

```
set.seed(154) # so you can reproduce the results
w = rnorm(200); x = cumsum(w) # two commands in one line
wd = w +.2; xd = cumsum(wd)
tsplot(xd, ylim=c(-5,55), main="random walk", ylab="")
lines(x, col=4)
abline(h=0, col=4, lty=2)
abline(a=0, b=.2, lty=2)
```


Sinusoid in Noise

$$
x_{t}=2 \cos (2 \pi t / 50+0.6 \pi)+w_{t}
$$

```
cs = 2*cos(2*pi*(1:500)/50 + . 6*pi)
w = rnorm(500,0,1)
par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5) # help(par) for info
tsplot(cs, ylab="", main = expression(x[t]==2*cos(2*pi*t/50+.6*pi)))
tsplot(cs + w, ylab="", main =
expression(x[t]==2* cos(2*pi*t/50+.6*pi)+N(0,1)))
tsplot(cs + 5*w, ylab="", main =
expression(x[t]==2*\operatorname{cos}(2*pi*t/50+.6*pi)+N(0,25)))
```


Models for Time Series Data

Name	Example
White noise	$w_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
Moving Average	$x_{t}=\left(w_{t-1}+w_{t}+w_{t+1}\right) / 3$
Autoregression	$x_{t}=x_{t-1}-0.9 x_{t-2}+w_{t}$
Random Walk	$x_{t}=x_{t-1}+w_{t}$
Sinusoid in noise	$x_{t}=2 \cos (2 \pi t / 50+0.6 \pi)+w_{t}$

