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Probability



Probability and Random Variables

• Probability space (Ω,F ,Pr)
• F is a σ-field if:

• Ω ∈ F
• A ∈ F ⇒ Ω \ A ∈ F
• A1,A2, . . . ∈ F ⇒ ∪iAi ∈ F

• Pr : F → [0, 1] is a probability measure if:
• Pr(A) ≥ 0, A ∈ F
• Pr(Ω) = 1

• A1,A2, . . . ∈ F are disjoint ⇒ Pr(∪iAi ) =
∑

i Pr(Ai )

• Random variable: function X : Ω → R such that

{ω : X (ω) ≤ a} ∈ F
• Random vector: function X : Ω → Rn such that

{ω : Xi (ω) ≤ a} ∈ F , i = 1, . . . , n

• Notation

X ≤ a := {ω : X (ω) ≤ a} ,

so that

Pr(X ≤ a) = Pr ({ω : X (ω) ≤ a})
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Independence and Bayes’ Law

• Events A,B ∈ F are independent iff

Pr(A,B) = Pr(A ∩ B) = Pr(A) Pr(B)

• Random variables X and Y are independent iff

Pr(X ≤ a,Y ≤ b) = Pr(X ≤ a) Pr(Y ≤ b) for any a, b ∈ R

• The conditioned probability of A ∈ F given B ∈ F is

Pr(A|B)Pr(A ∩ B)

Pr(B)
, A ∈ F

• Bayes’ law:

Pr(A|B) = Pr(B|A)P(A)
P(B)
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Distribution Functions

• The cumulative distribution function (CDF) of the RV X :

FX (x) := Pr[X ≤ x ] = Pr[{ω, : X (ω) ≤ x}], x ∈ R

• The probability density function (PDF) of the RV X , if exists, satisfies

FX (x) =

∫ x

−∞
fX (t)dt

• The multivariate CDF of the d-dimensional random vector X is the

function FX : Rd → [0, 1]

FX (x1, . . . , xd) := Pr [X1 ≤ x1, . . . ,Xd ≤ xd ]

• The multivariate PDF of the d-dimensional random vector X , if exists, is

the function fX : Rd → R satisfying

FX (x1, . . . , xd) :=

∫ x1

−∞
· · ·

∫ xd

−∞
fX (t1, . . . , td)dt1 · · · dtd ,

(x1, . . . , xd) ∈ Rd .

• The quantile function of the RV X is

Q(p) := inf {x ∈ R : p ≤ F (x)} , p ∈ [0, 1]
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Expectation and Moments

Suppose that the RV X has a density function fx , and let h(x) be a real

valued function on R.

• The expectation of h(X ) is

E [h(X )] :=

∫ ∞

−∞
h(x)fX (x)dx

provided the integral exists. Otherwise, E [h(X )] does not exists.

• Taking h(x) = xk gives the k-th moment of X

• Some special moments of interest have given names:

• The mean µ = E [X ] corresponds to h(x) = x

• The variance of X is σ2 := E
[
(X − µ)2

]
• The skewness of X is γ := E

[
(X − µ)3

]
/σ3

• The (excess) kurtosis of X is κ := E
[
(X − µ)4

]
/σ4 − 3

• γ is useful as a measure of symmetry; it is zero for symmetric

distributions

• κ = 0 when X ∼ N(0, 1). κ is useful in measuring whether the tails

of the distribution are heavier (κ > 0) or lighter (κ < 0) than the

tails of the normal distribution.
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Expectation and Moments

These moments behave nicely under averages. Suppose that

X̄ = 1
n

∑n
i=1 Xi for Xi iid. Then

• µ(X̄ ) = µ

• σ2(X̄ ) = σ2/n

• γ(X̄ ) = γ/
√
n

• κ(X̄ ) = κ/n

From the CLT we expect γ(X̄ ) → 0 and κ(X̄ ) → 0. The evaluation

above shows that the heaviness of the tail, as measured by κ, approaches

that of the normal distribution much quicker than the skewness. For this

reason, we expect the normal approximation resulted from the CLT to

apply more accurately for symmetric distributions. When dealing with

non-normality, skewness is more of an issue than non-Gaussian tails.
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Random Vectors and Matrices

• Let X be an n × p matrix of random variables

X =


X11 X12 · · · X1p

X21 X22 · · · X2p

...
. . .

...

Xn1 Xn2 · · · Xnp


• The expectation of X is defined as

E [X ] :=


E [X11] E [X12] · · · E [X1p]

E [X21] E [X22] · · · E [X2p]
...

. . .
...

E [Xn1] E [Xn2] · · · E [Xnp]


• Taking p = 1 or n = 1, gives the definition for the expected value of

row or columns vectors, respectively.

• Note that, for non-random A ∈ R∗×n and B ∈ Rp×∗,

E [AX ] = AE [X ] , E [XB] = E [X ]B
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Covariances

Let X ∈ Rn and Y ∈ Rm be two random column vectors.

• The covariance of X and Y is

Cov (X ,Y ) := E
[
(X − E [X ])(Y − E [Y ])⊤

]
∈ Rn×m

(the i , j-th coordinate of Cov (X ,Y ) equals Cov (Xi ,Yj))

• The variance-covariance matrix of X is

Var [X ] := Cov (X ,X ) = E
[
(X − E [X ])(X − E [X ])⊤

]
∈ Rn×n

(variances are on the diagonal; covariances are on the off-diagonal)

• For non-random matrices A ∈ R∗×p and B ∈ R∗×m,

Cov (AX ,BY ) = ACov (X ,Y )B⊤.

• For a constant vector b ∈ R∗,

Var [AX + b] = AVar [X ]A⊤

• Var [X ] is positive semi-definite because

0 ≤ Var
[
c⊤X

]
= c⊤Var [X ] c , c ∈ Rn
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Conditional Expectation

Let X and Y be RVs with finite second moments.

• Conceptually, the conditional expectation E [Y |X ] of Y given X is

the expected value of the distribution of Y conditioned on the value

of X . Since X is a RV, so does E [Y |X ]

• For Y and X with a joint density fX ,Y , define

eY (x) :=

∫ ∞

−∞
yfY |X (y |x)dy =

∫ ∞

−∞
y
fX ,Y (x , y)

fX (x)
dy

The conditional expectation of Y given X is the RV

E [Y |X ] := eY (X )

• More generally, let H be the smallest σ-field generated by the events

{X ≤ a}, a ∈ R. Then E [Y |X ] is any RV satisfying

E [1AE [Y |X ]] = E [1AY ] , ∀A ∈ H
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Properties of the Conditional Expectation

Let X , Y , and Z be RVs.

• E [aY + Z |X ] = aE [Y |X ] + E [Z |X ], a ∈ R
• E [E [Y |X ]] = E [Y ]

• E [Y |X ] = E [E [Y |X ,Z ] |Z ]
• If Y = g(X ), then E [Y |X ] = E [g(X )|X ] = g(X ) = Y (Y is

treated as a deterministic object under the conditional expectation)

• Law of total variance for Y with E
[
Y 2
]
< ∞:

Var [Y ] = Var [E [Y |X ]] + E [Var [Y |X ]] ,

where Var [Y |X ] := E
[
(Y − E [Y | X ])2 |X

]
(the variance under

the law of Y conditioned on X )

• For Y with E
[
Y 2
]
< ∞:

E [Y |X ] ∈ arg min
g : g(X ) is a RV

E
[
(Y − g(X ))2

]
(for our purposes, this can also serves as the definition of E [Y |X ])
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Independence

• Two RVs X and Y are independent iff

FX ,Y (x , y) = FX (x)FY (y), x , y ∈ R

• Two random vectors X and Y are independent, iff for every

measurable functions g : Rn → R, h : Rm → R, g(X ) and h(Y ) are

indepdendent RVs

• If X and Y are independent (RVs or vectors):

• fX |Y = fX and fY |X = fY

• E [X |Y ] = E [X ] and E [Y |X ] = E [Y ]

• Cov (X ,Y ) = 0
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The Normal Distribution



The Normal Distribution

• PDF and CDF functions of the standard normal distribution

Z ∼ N (0, 1)

ϕ(z) := fZ (z) =
1√
2π

e−z2/2, Φ(z) := FZ (z) =

∫ z

−∞
ϕ(x)dx

• The PDF and CDF of the normal distribution X ∼ N (µ, σ2) are

fX (x) =
1

σ
ϕ

(
x − µ

σ

)
, FX (x) = Φ

(
x − µ

σ

)
(σ is always assumed to be the non-negative root of σ2)

• If Z ∼ N (0, 1), then σZ + µ ∼ N (µ, σ2)

• It is sometimes useful to define N (µ, 0) as a point mass distribution

at µ:

X ∼ N (µ, 0) ⇔ Pr(X ≤ x) = 1x≥µ.

Namely, X ∼ N (µ, 0) is the constant µ with probability one.
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The Central Limit Theorem (CLT)

Let X1,X2, . . . ,Xn be a sequence of identically, independently distributed

(iid) RVs with E [X1] = µ and Var [X1] = σ2 < ∞. Then

√
n(X̄n − µ)

D→ N (0, σ2). (1)

Convergence in distribution (indicated by
D→) means pointwise

convergence to a CDF, excluding points of discontinuity. In our case, (1)

says that

lim
n→∞

Pr
[√

n(X̄n − µ) ≤ z
]
= lim

n→∞
Pr

[√
n(X̄n − µ)

σ
≤ z

σ

]
= Φ

( z
σ

)
for all z ∈ R.
Many other versions of the CLT exist to cover different assumptions such

dependency among the RVs and/or non-identically distributed RVs.
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Chi-squared distribution χ2

• Let Z1, . . . ,Zk
iid∼ N (0, 1). The distribution χ2

k is defined as

k∑
i=1

Z 2
i ∼ χ2

k

where k is called the number of degrees of freedom

• PDF:

f (x ; k) =
x

k
2−1e−

x
2

2
k
2 Γ
(
k
2

) 1x≥0

• If X ∼ χ2
k , then

E [X ] = k , Var [X ] = 2k

• Fun fact:

Var


√√√√ k∑

i=1

Z 2
i

 = O(1)
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t-distribution

• Suppose that Z ∼ N (0, 1) and X ∼ χ2
k , X and Z independent.

Then
Z√
X
k

∼ tk

where k is called the number of degrees of freedom

• PDF:

f (t) =
Γ( k+1

2 )
√
kπ Γ( k2 )

(
1 +

t2

k

)− k+1
2

• If Y ∼ tk , then

E [Y ] = 0, Var [Y ] =
k

k − 2
, k ≥ 3

• The t-distribution converges to the normal distribution as k → ∞.

It has heavier tails than that of the normal distribution.
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F-distribution

• The normalized ratio of two Chisquared distribution:

Fd1,d2 :=
1
d1
χ2
d1

1
d2
χ2
d2

• PDF:

f (x ; d1, d2) =
1

B
(
d1
2 ,

d2
2

) (d1
d2

)d1/2

xd1/2−1

(
1 +

d1
d2

x

)−(d1+d2)/2

• If X ∼ Fn1,n2 , then

E [X ] =
d2

d2 − 2
, d2 > 2
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The Multivariate Normal

• Consider a matrix A ∈ Rn×m, a vector µ ∈ Rm and the random

vector

Z =
[
z1 z2 · · · zn

]⊤
, zi

iid∼ N (0, 1)

• The random vector Y = AZ + µ has an m-dimensional multivariate

normal distribution with mean µ and variance-covariance matrix

Σ = AA⊤:

Y ∼ N (µ,Σ)

• If Σ is invertible, then the density of Y is

fY (y) =
1

(2π)m/2
√
|Σ|

exp

(
−1

2
(y − µ)T Σ−1 (y − µ)

)
(here y = (y1, . . . , ym))
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Depiction

(figure from Wikipedia)
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Multivariate CLT

Let X1,X2, . . . ,Xn be a sequence of iid random vectors in Rd with

E [X1] = µ ∈ Rd and Var [X1] = Σ ∈ Rd×d . Then

√
n(X̄n − µ)

D→ N (0,Σ), (2)

where

X̄n :=
1

n

n∑
i=1

Xi ∈ Rd

In our case, (2) says that

lim
n→∞

Pr
[√

n(X̄n1 − µ1) ≤ z1, . . . ,
√
n(X̄nd − µd) ≤ zd

]
=

1

(2π)d/2|Σ|
exp

(
−1

2

(
(z − µ)⊤Σ−1(z − µ)

)2)
for all (z1, . . . , zd) ∈ Rd .
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Linear Transformations of Normal RVs

An affine transformation of a normal vector is a normal vector

• If Y ∼ N (µ,Σ) and U = BY + η, then

U ∼ N
(
Bµ+ η,BΣB⊤)

• For example: Z1,Z2
iid∼ N (0, 1), then

a1Z1 + a2Z2 ∼ N (0, a21 + a22)

and[
a11Z1 + a12Z2

a21Z1 + a22Z2

]
∼ N

(
0,

[
a211 + a212 a11a21 + a12a22

a11a21 + a12a22 a221 + a222

])
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Quadratic Forms

Suppose that A ∈ Rn×n. The quadratic form associated with A is the

scalar

x⊤Ax =
n∑

i=1

n∑
j=1

Aijxixj

We have x⊤Ax = x⊤(A/2 + A⊤/2)x , hence we can assume that A is

symmetric.
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Why do we care about Quadratic Forms?

• The variance estimate σ̂2 of the sample y1, . . . , yn is a quadratic

form. Indeed,

σ̂2 ∝ 1

n

n∑
i=1

(yi − ȳ)2 , ȳ =
1

n

n∑
i=1

yi .

In matrix notation:y1...
yn


⊤

1− 1

n − 1
n · · · − 1

n

− 1
n 1− 1

n

...
...

. . .
...

− 1
n · · · − 1

n 1− 1
n


y1...
yn

 =
n∑

i=1

yi (yi − ȳ)

whereas
n∑

i=1

yi (yi − ȳ) =
n∑

i=1

(yi − ȳ)2

• R2 is of the form:

R2 = 1− y⊤A1y

y⊤A2y 21



Normal Quadratic Forms

Suppose Y ∼ N (µ,Σ) and that Σ−1 ∈ Rn×n exists. Then

(Y − µ)⊤Σ−1(Y − µ) ∼ χ2
n

Why? eigenvalue decomposition:

• Because Σ is positive definite, we can write

Σ = P⊤ΛP, P⊤P = In, Λ = diag(λ1, . . . , λn), λj > 0.

• Define Z = Λ−1/2P(Y − µ). Then

Z ∼ N
(
0,Λ−1/2PΣP⊤Λ−1/2

)
= N

(
0,Λ−1/2PP⊤ΛPP⊤Λ−1/2

)
= N (0, In)

It follows that Z1, . . . ,Zn
iid∼ N (0, 1), so

(Y − µ)⊤Σ−1(Y − µ) = Z⊤Z =
n∑

i=1

Z 2
i ∼ χ2

n
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Rotation

• Suppose that:

• Z ∼ N (0, σ2I )

• Q is orthogonal (Q⊤Q = I )

• Then

Y = QZ ∼ N (0, σ2I )

An isotropic normal distribution is invariant under rotations
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Independence

• Suppose that we partition Y ∼ N (µ,Σ) in two:

Y =

[
Y1

Y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ⊤
12 Σ22

])

Y1 and Y2 are independent if Cov (Y1,Y2) = Σ12 = 0 (when Σ is

invertible, the proof of is from the multivariate normal density)

• For normal RVs: uncorrelatedness implies independence
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Independence (cont’d)

• Suppose that Yi
iid∼ N (µ, σ2).

• Define:
Ȳ

Y1 − Ȳ
...

Yn − Ȳ

 :=

 1
n

· · · 1
n

In − 1
n
Jn



Y1

...

Yn

 , where Jn =


1 1 · · · 1

1
. . . 1

...
...

1 1 · · · 1


• Using that AY ∼ N (Aµ, σ2AA⊤),

Ȳ

Y1 − Ȳ
...

Yn − Ȳ

 ∼ N



µ

0
...

0

 , σ2

[
1
n

0

0 In − 1
n
Jn

]
so that Ȳ is independent of Y1 − Ȳ , . . . ,Yn − Ȳ .

• Consequently

(Ȳ − µ)/(σ/
√
n)√

1
n−1

∑n
i=1(Yi−Ȳ )2

σ2

=

√
n(Ȳ − µ)√

1
n−1

∑n
i=1(Yi − Ȳ )2

∼ tn−1

• With the normal distribution you can mine the data twice and get independent

entities: one for the numerator and one for the denominator 25



Conditional Distributions

• Suppose that we know Y1 in:

Y =

[
Y1

Y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ⊤
12 Σ22

])
What is L(Y2|Y1)? (the conditional distribution of Y2 given Y1)

• It is Gaussian with mean

E [Y2|Y1] = µ2 +Σ21Σ
−1
11 (Y1 − µ1)

and variance

Var [Y2|Y1] = Σ22 − Σ21Σ
−1
11 Σ21
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Conditional Distributions (cont’d)

• In particular, if[
X

Y

]
∼ N

([
µx

µy

]
,

[
σ2
x ρσxσy

ρσxσy σ2
y

])
then the conditional distribution of Y given X is

L(Y |X ) = N
(
µy + ρσy

X − µx

σx
, σ2

y (1− ρ2)

)
• Observations:

• The conditional mean is linear in X

• ∆ = (X − µx)/σx is the number of standard deviations X is from µx .

ρ determines the determines the relationship between X s and Y s

standard deviations.

• The variance is independent of X

When [Y ,X ]⊤ is multivariate normal, then Var [Y |X = x ] does

not depend on which exact x was observed. Observing X = x

shifts the expected value of Y by a linear function of x but makes

a variance change (usually a reduction) that is independent of x .
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