Advanced Statistics Spring 2022
 Linear Model I (Lecture 2)

Dr. Alon Kipnis

Material credit: Art Owen

Announcements

- Home Assignment 1 will be posted tonight. Due before class on March 22.
- Exploratory data analysis tutorial is available on course website
- Notes and code from the first lecture are available on course website
- Clarification concerning two-phase regression on Piazza

Recap - The Linear Model

We have data:

$$
\left(x_{i}, y_{i}\right), \quad i=1, \ldots, n
$$

We propose a model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{p} x_{i p}+\epsilon_{i}, \quad \epsilon_{i} \stackrel{i i d}{\sim}\left(0, \sigma^{2}\right)
$$

or

$$
\mathbb{E}[Y \mid X=x]=\beta_{1} x_{1}+\ldots+\beta_{p} x_{p}
$$

Tasks we would like to perform:

- Estimate $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$
- Test, e.g., whether $\beta_{105}=0$ or not
- Predict y_{n+1} given x_{n+1}
- Estimate σ^{2}
- Check the model's assumptions
- Make a choice among linear models

Example: Predicting Home Prices

$$
y_{i}=\sum_{j=1}^{p} \beta_{j} x_{i p}+\epsilon_{i}
$$

$$
\begin{array}{ll}
y_{i}= & \text { sale price of home } i \\
x_{i 1}= & \text { constant } \\
x_{i 2}= & \text { square meters of home } i \\
x_{i 3}= & \# \text { of bedrooms of home } i \\
\vdots= & \vdots \\
x_{i, 203}= & \# \text { of synagogues near home } i
\end{array}
$$

Remarks:

- The model would still be linear even if we had that $x_{i, 93}=\sqrt{\# \text { of bedrooms }}$
- Sum of linear models is also a linear model

Linear Model Notation

$$
\begin{gathered}
x_{i} \in \mathbb{R}^{d}, \quad y_{i} \in \mathbb{R} \\
y_{i}=\sum_{j=1}^{p} z_{i j} \beta_{j}+\epsilon_{i}
\end{gathered}
$$

where $z_{i j}=f_{j}\left(x_{i}\right)$ is a function of x_{i} (we call $f_{j}(x)$ the j-th feature of x)
Note that d (the dimension of x) does not necessarily equal p. Examples:

$$
z_{i}=\left(\begin{array}{llll}
1 & x_{i 1} & \cdots & x_{i d}
\end{array}\right)^{\top} \in \mathbb{R}^{d+1}
$$

or

$$
z_{i}=\left(\begin{array}{lllll}
1 & x_{i 1} & x_{i 2} & x_{i 1}^{2} & x_{i 2}^{2}
\end{array}\right)^{\top} \in \mathbb{R}^{5}
$$

- Names for $\left\{f_{j}\left(x_{i}\right)\right\}:(j$-th $)$ feature, predictor, covariate, independent variable
- Names for $\left\{y_{i}\right\}$: response,response variable, dependent variable, target, label

Least Squares

Setting

- We have data:

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}
$$

- We want: to develop a model for a new response y_{n+1} given a new observation x_{n+1}
- Our approach:

1. We transform each data point x_{i} to p features:

$$
z_{i j}=f_{j}\left(x_{i}\right), \quad z_{i j}, \quad i=1, \ldots, n, \quad j=1, \ldots, p
$$

2. We assume a linear response model:

$$
\hat{y}_{n+1}=\sum_{j=1}^{p} z_{n+1, j} \beta_{j}=\beta^{\top} z_{n+1}
$$

where $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$ is a function of $\left\{\left(\left(z_{i 1}, \ldots, z_{i p}\right), y_{i}\right)\right\}_{i=1}^{n}$
3. We choose the model parameters to minimize the squared error over the given data:

$$
\hat{\beta}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} z_{i}\right)^{2}
$$

Depiction

Least Squares Notation

- Def. Observed response variables: $y_{1}, y_{2}, \ldots, y_{n}$
- Def. Features: $z_{i j}$ for $i=1, \ldots, n$ and $j=1, \ldots, p$
- Def. Regression coefficients: $\beta:=\left(\beta_{1}, \ldots, \beta_{p}\right)$
- Def. Squared error:

$$
S(\beta):=\sum_{i=1}^{n}\left(y_{i}-\beta^{\top} z_{i}\right)^{2}
$$

- Def. Least squares estimate:

$$
\hat{S}:=\min _{\beta \in \mathbb{R}^{p}} S(\beta)
$$

- Def. Least squares regression coefficients:

$$
\hat{\beta}:=\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{p}\right):=\underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}} S(\beta)
$$

Computing least squares estimate \& regression coefficients

- Using calculus:

$$
\frac{\partial S}{\partial \beta_{j}}=0 \quad \Rightarrow \quad 2 \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} z_{i}\right)\left(-z_{i j}\right)=0, \quad j=1, \ldots, p
$$

(we also need to show that the solution is the minimum and not the maximum or a saddle point)

- Def. These p equations are known as the Normal Equation (bc. normal is a synonym to perpendicular)
- We have

$$
\left(\hat{\epsilon}_{1}, \ldots, \hat{\epsilon}_{n}\right)^{\top}\left(z_{1 j}, \ldots, z_{n, j}\right)=0, \quad j=1, \ldots, p
$$

where

$$
\hat{\epsilon}_{i}:=y_{i}-\hat{\beta}^{\top} z_{i}, \quad i=1, \ldots, n
$$

are the residuals

Depiction of Residuals

$$
\hat{y}_{i}=\sum_{j=1}^{p} z_{i j} \hat{\beta}_{j}, \quad \hat{\epsilon}_{i}=y_{i}-\hat{y}_{i}, \quad\left(\hat{\beta}_{1}, \ldots, \beta_{p}\right)=\operatorname{argmin} S\left(\beta_{1}, \ldots, \beta_{p}\right)
$$

With one predictor x and a constant term: $\hat{y}_{i}=\hat{\beta}_{1} \cdot 1+\hat{\beta}_{2} \cdot x$

Matrix Notation

- Observed response and features:

$$
y:=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \in \mathbb{R}^{n}, \quad Z:=\left(\begin{array}{cccc}
z_{11} & z_{12} & \cdots & z_{1 p} \\
z_{21} & z_{22} & \cdots & z_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
z_{n 1} & z_{n 2} & \cdots & z_{n p}
\end{array}\right) \in \mathbb{R}^{n \times p}
$$

Z is also called the design or data matrix.

- Vector of residuals: $\hat{\epsilon}:=y-Z \hat{\beta}$
- The Normal Equations (after dividing by -2):

$$
\hat{\epsilon}^{\top} Z=0 \quad \Leftrightarrow \quad Z^{\top} \hat{\epsilon}=0 \quad \Leftrightarrow \quad Z^{\top} Z \hat{\beta}=Z^{\top} y
$$

- If $Z^{\top} Z$ is invertible, then $\hat{\beta}=\left(Z^{\top} Z\right)^{-1} Z^{\top} y$
- The predicted value at a new point vector z_{n+1} is

$$
\hat{y}_{n+1}=\hat{\beta}^{\top} z_{n+1}=\left(\left(Z^{\top} Z\right)^{-1} Z^{\top} y\right)^{\top} z_{n+1}=y^{\top} Z\left(Z^{\top} Z\right)^{-1} z_{n+1}
$$

(linear both in the observed response vector y and the new point vector z_{n+1})

Uniqueness of Least Squares Solution

Theorem

Let $Z \in \mathbb{R}^{n \times p}$ with $\left(Z^{\top} Z\right)^{-1}$ invertible, and let $y \in \mathbb{R}^{n}$. For $\beta \in \mathbb{R}^{p}$, define $S(\beta)=(y-Z \beta)^{\top}(y-Z \beta)$ and set $\hat{\beta}=\left(Z^{\top} Z\right)^{-1} Z^{\top} y$. Then $S(\beta)>S(\hat{\beta})$ for any $\beta \neq \hat{\beta}$.

Proof. We know that $Z^{\top}\left(y-\hat{\beta}^{\top} Z\right)=0$. For arbitrary $\beta \in \mathbb{R}^{p}$, let $\gamma=\beta-\hat{\beta}$. Then

$$
\begin{aligned}
S(\beta) & =(y-z \beta)^{\top}(y-z \beta) \\
& =(y-z \hat{\beta}-Z \gamma)^{\top}(y-z \hat{\beta}-Z \gamma) \\
& =(y-z \hat{\beta})^{\top}(y-z \hat{\beta})-\gamma^{\top} z^{\top}(y-z \hat{\beta})-(y-z \hat{\beta}) Z \gamma+\gamma^{\top} z^{\top} z \gamma \\
& =S(\hat{\beta})+\gamma^{\top} z^{\top} z \gamma .
\end{aligned}
$$

It follows that $S(\beta)=S(\hat{\beta})+\|Z \gamma\|^{2} \geq S(\hat{\beta})$, so that $\hat{\beta}$ is a minimizer of S. For uniqueness, we have $S(\hat{\beta})=S(\beta)$ iff $Z \gamma=0$. Since Z is invertible, this implies $\gamma=0$ hence $\beta=\hat{\beta}$.

Geometry of Least Squares

- Consider the set $\mathcal{M}:=\left\{Z \beta \mid \beta \in \mathbb{R}^{p}\right\} \subset \mathbb{R}^{n}$ (fully p dimensional because $Z^{\top} Z$ is invertible and so Z has rank p; convex)
- $Z \hat{\beta}$ is the closest point to Y from within \mathcal{M}
- From the normal equations $\hat{\epsilon}^{\top} Z=0$, we get that $\hat{\epsilon}=y-Z \hat{\beta}$ is perpendicular to any line within \mathcal{M}

Geometry of Least Squares (cont'd)

- We can form a right angle triangle using $(y, \hat{y}, Z \beta)$ for any $\beta \in \mathbb{R}^{p}$, where $\hat{y}:=Z \hat{\beta}$
- For $\beta=0$, we get: $\|y\|^{2}=\|\hat{\epsilon}\|^{2}+\|\hat{y}\|^{2}$ (take $\beta=0$ in the proof of the theorem above, so that $\left.S(0)=S(\hat{\beta})+\|Z \hat{\beta}\|^{2}\right)$
- In the next slide we will use $\beta=(\bar{y}, 0, \ldots, 0)$, where $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$

Sum-of-Squares Decomposition

- Suppose that the first feature is the all ones vector

$$
Z_{i 1}=(1, \ldots, 1), \quad i=1, \ldots, n
$$

- We have

$$
\underline{y}:=(\bar{y}, \ldots, \bar{y})^{\top} \in \mathcal{M}, \quad \bar{y}:=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

From the right angle triangle $(y, \hat{y}, \underline{y})$

$$
\begin{gathered}
\|y-\underline{y}\|^{2}=\|\hat{y}-\underline{y}\|^{2}+\|y-\hat{y}\|^{2} \\
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
\end{gathered}
$$

- $S S_{\text {Tot }}:=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$ is the Total (or centered) sum of squares
- $S S_{\text {Fit }}:=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$ is the Centered sum of squares of fitted values
- $S S_{\text {Res }}:=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$ is the Residual sum of squares

Sum-of-Squares Decomposition (cont'd)

- We write

$$
\begin{equation*}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \tag{1}
\end{equation*}
$$

as

$$
S S_{T o t}=S S_{F i t}+S S_{R e s}
$$

- Def. Coefficient of determination:

$$
R^{2}:=\frac{S S_{\text {Fit }}}{S S_{\text {Tot }}}=1-\frac{S S_{R e s}}{S S_{T o t}}
$$

- Proportion of variation accounted for by all variables compared to the sum of squares error under the model $y_{i}=\beta_{0}+\epsilon_{i}$
- Measures how well Y is predicted or determined by $Z \hat{\beta}$:
- $R:=\sqrt{R^{2}}$ is called the coefficient of multiple correlation - it measures how well the response y correlates with the p predictors in Z taken collectively
- When $z_{i}=\left(1, x_{i}\right) \in \mathbb{R}^{2}, R$ is the Pearson correlation of $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$
- Equation (1) is an example of ANOVA decomposition

Examples

Algebra of Least Squares

Algebra of Least Squares

- The predicted value for y_{i} is $\hat{y}_{i}=Z_{i} \hat{\beta}$
- The vector of predicted values is

$$
\hat{y}=H y, \quad H:=Z\left(Z^{\top} Z\right)^{-1} Z^{\top}
$$

(Tukey called H the "hat" matrix)

- Properties of H :
- Symmetric: $H=H^{\top}$
- Idempotent: $H^{2}=H$ (a symmetric idempotent matrix such as H is called a perpendicular projection matrix (PPM))
- The eignevalues of a real PPM are all either 0 or 1
- If Z is invertible, H has p non-zero eigenvalues
- $I-H$ is PPM

Algebra of Least Squares (cont'd)

Theorem

Let A be PPM. The eigenvalues of A are all either 0 or 1 .
Proof. If x is an eigenvector of H with eigenvalue λ, then $H x=\lambda x$ and $x \neq 0$. Because H is PPM, $\lambda x=H x=H^{2} x=H(H x)=H(\lambda x)=\lambda^{2} x$, hence $\lambda^{2}=\lambda$ which is satisfied iff $\lambda \in\{0,1\}$.

Theorem

The rank of H is p
Proof. The eigenvalues of H sum to r, so
$r=\operatorname{Tr}(H)=\operatorname{Tr}\left(Z\left(Z^{\top} Z\right)^{-1} Z^{\top}\right)=\operatorname{Tr}\left(Z^{\top} Z\left(Z^{\top} Z\right)^{-1}\right)=\operatorname{Tr}\left(I_{p}\right)=p$

Algebra of Least Squares (cont'd)

Additional properties of $H=Z\left(Z^{\top} Z\right)^{-1} Z^{\top}$:

- $\hat{y}_{i}=H_{i} y\left(H_{i}\right.$ is the i-th row of $\left.H\right)$
- $H_{i j}=z_{i}^{\top}\left(Z^{\top} Z\right)^{-1} z_{j}=H_{j i}$ (the contribution of y_{i} to \hat{y}_{j} equals that of y_{j} to \hat{y}_{i})
- $H_{i i}=z_{i}^{\top}\left(Z^{\top} Z\right)^{-1} z_{i} \geq 0$ (Exc.)
- H projects vectors onto the columns space of Z $\operatorname{Col}(Z):=\mathcal{M}=\left\{Z \beta \mid \beta \in \mathbb{R}^{p}\right\}$
- $I-H$ projects vectors onto the null space of Z $\operatorname{Null}(Z):=\mathcal{M}^{\top}:=\left\{v \in \mathbb{R}^{n}, \mid Z v=0\right\}$ (the set of vectors orthogonal to vectors in \mathcal{M})

The columns space and the null space are orthogonal complements: any $v \in \mathbb{R}^{n}$ can be uniquely written as $v_{1}+v_{2}, v_{1} \in \mathcal{M}$ and $v_{2} \in \mathcal{M}^{\top}$. This is written as $\mathbb{R}^{n}=\mathcal{M} \oplus \mathcal{M}^{\top}$. In terms of the H matrix, $v_{1}=H v$ and $v_{2}=(I-H) v$.

Distributional Results

