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Announcements

• Home Assignment 1 will be posted tonight. Due before class on

March 22.

• Exploratory data analysis tutorial is available on course website

• Notes and code from the first lecture are available on course website

• Clarification concerning two-phase regression on Piazza
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Recap – The Linear Model

We have data:

(xi , yi ), i = 1, . . . , n

We propose a model:

yi = �0 + �1xi1 + . . .+ �pxip + ✏i , ✏i
iid⇠ (0,�2)

or

E [Y |X = x ] = �1x1 + . . .+ �pxp

Tasks we would like to perform:

• Estimate � = (�1, . . . ,�p)

• Test, e.g., whether �105 = 0 or not

• Predict yn+1 given xn+1

• Estimate �2

• Check the model’s assumptions

• Make a choice among linear models
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Example: Predicting Home Prices

yi =
pX

j=1

�jxip + ✏i

yi = sale price of home i

xi1 = constant

xi2 = square meters of home i

xi3 = # of bedrooms of home i

... =
...

xi,203 = # of synagogues near home i

Remarks:

• The model would still be linear even if we had that

xi,93 =
p
#of bedrooms

• Sum of linear models is also a linear model

3



Linear Model Notation

xi 2 Rd , yi 2 R,

yi =
pX

j=1

zij�j + ✏i ,

where zij = fj(xi ) is a function of xi (we call fj(x) the j-th feature of x)

Note that d (the dimension of x) does not necessarily equal p. Examples:

zi =
⇣
1 xi1 · · · xid

⌘>
2 Rd+1

or

zi =
⇣
1 xi1 xi2 x

2

i1 x
2

i2

⌘>
2 R5

• Names for {fj(xi )}: (j-th) feature, predictor, covariate,
independent variable

• Names for {yi}: response,response variable, dependent variable,

target, label
4



Least Squares



Setting

• We have data:

{(xi , yi )}ni=1

• We want: to develop a model for a new response yn+1 given a new

observation xn+1

• Our approach:
1. We transform each data point xi to p features:

zij = fj(xi ), zij , i = 1, . . . , n, j = 1, . . . , p

2. We assume a linear response model:

ŷn+1 =

pX

j=1

zn+1,j�j = �>
zn+1

where � = (�1, . . . ,�p) is a function of {((zi1, . . . , zip), yi )}ni=1

3. We choose the model parameters to minimize the squared error over

the given data:

�̂ = argmin
�

nX

i=1

(yi � �>
zi )

2
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Depiction
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Least Squares Notation

• Def. Observed response variables: y1, y2, . . . , yn

• Def. Features: zij for i = 1, . . . , n and j = 1, . . . , p

• Def. Regression coe�cients: � := (�1, . . . ,�p)

• Def. Squared error:

S(�) :=
nX

i=1

�
yi � �>

zi

�2

• Def. Least squares estimate:

Ŝ := min
�2Rp

S(�)

• Def. Least squares regression coe�cients:

�̂ := (�̂1, . . . , �̂p) := argmin
�2Rp

S(�)
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Computing least squares estimate & regression coe�cients

• Using calculus:

@S

@�j
= 0 ) 2

nX

i=1

(yi � �>
zi )(�zij) = 0, j = 1, . . . , p

(we also need to show that the solution is the minimum and not the

maximum or a saddle point)

• Def. These p equations are known as the Normal Equation (bc.

normal is a synonym to perpendicular)

• We have

(✏̂1, . . . , ✏̂n)
>(z1j , . . . , zn,j) = 0, j = 1, . . . , p

where

✏̂i := yi � �̂>
zi , i = 1, . . . , n

are the residuals
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Depiction of Residuals

ŷi =
pX

j=1

zij �̂j , ✏̂i = yi � ŷi , (�̂1, . . . ,�p) = argmin S(�1, . . . ,�p)

With one predictor x and a constant term: ŷi = �̂1 · 1 + �̂2 · x
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Matrix Notation

• Observed response and features:

y :=

0

BBBB@

y1

y2

...

yn

1

CCCCA
2 Rn, Z :=

0

BBBB@

z11 z12 · · · z1p

z21 z22 · · · z2p

...
...

. . .
...

zn1 zn2 · · · znp

1

CCCCA
2 Rn⇥p

Z is also called the design or data matrix.

• Vector of residuals: ✏̂ := y � Z �̂

• The Normal Equations (after dividing by �2):

✏̂>Z = 0 , Z
>✏̂ = 0 , Z

>
Z �̂ = Z

>
y

• If Z
>
Z is invertible, then �̂ = (Z

>
Z)

�1
Z

>
y

• The predicted value at a new point vector zn+1 is

ŷn+1 = �̂>
zn+1 =

⇣
(Z

>
Z)

�1
Z

>
y

⌘>
zn+1 = y

>
Z(Z

>
Z)

�1
zn+1

(linear both in the observed response vector y and the new point

vector zn+1)
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Uniqueness of Least Squares Solution

Theorem

Let Z 2 Rn⇥p
with (Z>

Z )�1
invertible, and let y 2 Rn

. For � 2 Rp
,

define S(�) = (y � Z�)>(y � Z�) and set �̂ = (Z>
Z )�1

Z
>
y . Then

S(�) > S(�̂) for any � 6= �̂.

Proof. We know that Z>(y � �̂>
Z ) = 0. For arbitrary � 2 Rp, let

� = � � �̂. Then

S(�) = (y � Z�)>(y � Z�)

= (y � Z �̂ � Z�)>(y � Z �̂ � Z�)

= (y � Z �̂)>(y � Z �̂)� �>
Z

>(y � Z �̂)� (y � Z �̂)Z� + �>
Z

>
Z�

= S(�̂) + �>
Z

>
Z�.

It follows that S(�) = S(�̂) + kZ�k2 � S(�̂), so that �̂ is a minimizer of

S . For uniqueness, we have S(�̂) = S(�) i↵ Z� = 0. Since Z is

invertible, this implies � = 0 hence � = �̂.
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Geometry of Least Squares

• Consider the set M := {Z� |� 2 Rp} ⇢ Rn (fully p dimensional

because Z
>
Z is invertible and so Z has rank p; convex)

• Z �̂ is the closest point to Y from within M
• From the normal equations ✏̂>Z = 0, we get that ✏̂ = y � Z �̂ is

perpendicular to any line within M
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Geometry of Least Squares (cont’d)

• We can form a right angle triangle using (y , ŷ ,Z�) for any � 2 Rp,
where ŷ := Z �̂

• For � = 0, we get: kyk2 = k✏̂k2 + kŷk2 (take � = 0 in the proof of

the theorem above, so that S(0) = S(�̂) + kZ �̂k2)
• In the next slide we will use � = (ȳ , 0, . . . , 0), where ȳ =

1

n

Pn
i=1

yi
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Sum-of-Squares Decomposition

• Suppose that the first feature is the all ones vector

Zi1 = (1, . . . , 1) , i = 1, . . . , n

• We have

y := (ȳ , . . . , ȳ)> 2 M, ȳ :=
1

n

nX

i=1

yi

From the right angle triangle (y , ŷ , y)

ky � yk2 = kŷ � yk2 + ky � ŷk2

nX

i=1

(yi � ȳ)2 =
nX

i=1

(ŷi � ȳ)2 +
nX

i=1

(yi � ŷi )
2

• SSTot :=
Pn

i=1
(yi � ȳ)2 is the Total (or centered) sum of squares

• SSFit :=
Pn

i=1
(ŷi � ȳ)2 is the Centered sum of squares of fitted

values

• SSRes :=
Pn

i=1
(yi � ŷi )2 is the Residual sum of squares
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Sum-of-Squares Decomposition (cont’d)

• We write
nX

i=1

(yi � ȳ)2 =
nX

i=1

(ŷi � ȳ)2 +
nX

i=1

(yi � ŷi )
2 (1)

as

SSTot = SSFit + SSRes

• Def. Coe�cient of determination:

R
2 :=

SSFit

SSTot
= 1� SSRes

SSTot

• Proportion of variation accounted for by all variables compared to

the sum of squares error under the model yi = �0 + ✏i
• Measures how well Y is predicted or determined by Z �̂:

• R :=
p
R2 is called the coe�cient of multiple correlation – it

measures how well the response y correlates with the p predictors in

Z taken collectively

• When zi = (1, xi ) 2 R2
, R is the Pearson correlation of {xi} and {yi}

• Equation (1) is an example of ANOVA decomposition
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Algebra of Least Squares



Algebra of Least Squares

• The predicted value for yi is ŷi = Zi �̂

• The vector of predicted values is

ŷ = Hy , H := Z (Z>
Z )�1

Z
>

(Tukey called H the ”hat” matrix)

• Properties of H:

• Symmetric: H = H
>

• Idempotent: H
2
= H (a symmetric idempotent matrix such as H is

called a perpendicular projection matrix (PPM))

• The eignevalues of a real PPM are all either 0 or 1

• If Z is invertible, H has p non-zero eigenvalues

• I � H is PPM
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Algebra of Least Squares (cont’d)

Theorem

Let A be PPM. The eigenvalues of A are all either 0 or 1.

Proof. If x is an eigenvector of H with eigenvalue �, then Hx = �x and

x 6= 0. Because H is PPM, �x = Hx = H
2
x = H(Hx) = H(�x) = �2

x ,

hence �2 = � which is satisfied i↵ � 2 {0, 1}.

Theorem

The rank of H is p

Proof. The eigenvalues of H sum to r , so

r = Tr(H) = Tr(Z (Z>
Z )�1

Z
>) = Tr(Z>

Z (Z>
Z )�1) = Tr(Ip) = p

17



Algebra of Least Squares (cont’d)

Additional properties of H = Z (Z>
Z )�1

Z
>:

• ŷi = Hiy (Hi is the i-th row of H)

• Hij = z
>
i (Z>

Z )�1
zj = Hji (the contribution of yi to ŷj equals that

of yj to ŷi )

• Hii = z
>
i (Z>

Z )�1
zi � 0 (Exc. )

• H projects vectors onto the columns space of Z

Col(Z ) := M = {Z� |� 2 Rp}
• I � H projects vectors onto the null space of Z

Null(Z ) := M> := {v 2 Rn, |Zv = 0} (the set of vectors

orthogonal to vectors in M)

The columns space and the null space are orthogonal complements:

any v 2 Rn can be uniquely written as v1 + v2, v1 2 M and v2 2 M>.

This is written as Rn = M�M>. In terms of the H matrix, v1 = Hv

and v2 = (I � H)v .
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Distributional Results


