Advanced Statistics for Data Science Spring 2022
 Lecture 1: Introduction, Course Overview, Exploratory Data Analysis

Dr. Alon Kipnis
March 1st 2022

Outline of first lecture

1. Overview
2. Course outline and organizational matters
3. Break
4. Notebook: Examples
5. Introduction to Linear Regression
6. Notebook: Exploratory Data Analysis

Why should you take this course?

Statistics and Computer Science

- The Information Age -
- Data availability - communication, storage, sensing devices
- Data analysis - computing power, algorithms

Statistics and Computer Science

- The Information Age -
- Data availability - communication, storage, sensing devices
- Data analysis - computing power, algorithms
- The Data Age -
- More data-driven business, healthcare, government decisions based on massive and ever-increasing datasets

Statistics and Computer Science

- The Information Age -
- Data availability - communication, storage, sensing devices
- Data analysis - computing power, algorithms
- The Data Age -
- More data-driven business, healthcare, government decisions based on massive and ever-increasing datasets
- Successful Applications:
- Web search engine
- Voice recognition systems
- Targeted advertising
- Recommendation systems
- Challenges are at the intersections of hardware, software, and statistics

The Data Age

The Unreasonable Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

Abstract

Eugene Wigner's article "The Unreasonable Effectiveness of Mathematics in the Natural Sciences" ${ }^{1}$ examines why so much of physics can be neatly explained with simple mathematical formulas such as $f=m a$ or $e=m c^{2}$. Meanwhile, sciences that involve human beings rather than elementary par-

behavior. So, this corpus could serve as the basis of a complete model for certain tasks-if only we knew how to extract the model from the data.

Learning from Text at Web Scale

The biggest successes in natural-language-related machine learning have been statistical speech recognition and statistical machine translation. The

Example - Predicting Housing Prices

3smtSF	Heating	HeatingQC	CentralAir	Electrical	1stFIrSF	2ndFirSF	LowC	GrLivArea	Bsmtl	BsmtH:	FullBatl	HalfBa	Bedrooı	Kitchen	Kitche	SalePrice
856	GasA	Ex	Y	SBrkr	856	854	0	1710	1	0	2	1	3	1	Gd	208500
1262	GasA	Ex	Y	SBrkr	1262	0	0	1262	0	1	2	0	3	1	TA	181500
920	GasA	Ex	Y	SBrkr	920	866	0	1786	1	0	2	1	3	1	Gd	223500
756	GasA	Gd	Y	SBrkr	961	756	0	1717	1	0	1	0	3	1	Gd	140000
1145	GasA	Ex	Y	SBrkr	1145	1053	0	2198	1	0	2	1	4	1	Gd	250000
796	GasA	Ex	Y	SBrkr	796	566	0	1362	1	0	1	1	1	1	TA	143000
1686	GasA	Ex	Y	SBrkr	1694	0	0	1694	1	0	2	0	3	1	Gd	307000
1107	GasA	Ex	Y	SBrkr	1107	983	0	2090	1	0	2	1	3	1	TA	200000
952	GasA	Gd	Y	FuseF	1022	752	0	1774	0	0	2	0	2	2	TA	129900
991	GasA	Ex	Y	SBrkr	1077	0	0	1077	1	0	1	0	2	2	TA	118000
1040	GasA	Ex	Y	SBrkr	1040	0	0	1040	1	0	1	0	3	1	TA	129500
1175	GasA	Ex	Y	SBrkr	1182	1142	0	2324	1	0	3	0	4	1	Ex	345000

- $x=$ (sqm,$\#$ Bd,$\#$ windows,\ldots, CrimeRate $)$
- $y=$ SalePrice

The Data Age: Fail I

THE WALL STREET JOCRNAL.

MARKETS
 The Future of Housing Rises in Phoenix

High-tech flippers such as Zillow are using algorithms to reshape the housing market

By Ryan Dezember and Peter Rudegeair / Photographs by Benjamin Hoste for The Wall Street Journal
June 19, 2019 11:10 am ET

The Data Age: Fail I

THE WALL STREET JOURNAL.

MARKETS
 The Future of Housing Rises in Phoenix

High-tech flippers such as Zillow are using algorithms to reshape the housing market

[^0]
©be New Horkeimes

Daily Business Briefing >

Zillow, facing big losses, quits flipping houses and will lay off a quarter of its staff.

The real estate website had been relying on its algorithm that estimates home values to buy and resell homes. That part of its business lost about $\$ 420$ million in three months.

[^1]them. Caitlin O'Hara for The New York Times

By Stephen Gandel
Nov. 2, 2021

The Data Age: Fail II

©゙be Actu dorkẽimes

Science

| WORLD | U.S. | N.Y./ REGION | BUSINESS | TECHNOLOGY | SCIENCE | HEALTH | SPORTS | OPINION |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ENVIRONMENT SPACE \& COSMOS

Computer Wins on ‘Jeopardy!': Trivial, It’s Not

Two "Jeopardy!" champions, Ken Jennings, left, and Brad Rutter, competed against a computer named Watson, which proved adept at buzzing in quickly.
By JOHN MARKOFF
Published: February 16, 2011

The Data Age: Fail II

 Science
 WORLD U.S. N.Y. / REGION
 BUSINESS
 TECHNOLOGY
 SCIENCE HEALTH
 SPORTS
 OPINION
 ENVIRONMENT SPACE \& COSMOS
 Computer Wins on ‘Jeopardy!': Trivial, It’s Not
 Forbes
 YORKTOWN HEIGHTS, NY - JANUARY 13: A general .
 Feb 8, 2013, 02:22pm EST
 IBM's Watson Gets Its First Piece Of Business In Healthcare

Bruce Upbin Former Contributor (1)
Tech
Follow
I manage our technology coverage
clinical research it can get its hard drives on. Today Watson has analyzed 605,000 pieces of medical evidence, 2 million pages of text, 25,000 training cases and had the assist of 14,700 clinician hours fine-tuning its decision accuracy. Six "instances" of Watson have already been installed in the last 12 months.

The Data Age: Fail II

This Class...

- ...is about making decisions based on data using models (see next slide)
- ... focuses on connecting methods to problems correctly (challenges are more philosophical than technical)
- ...is mostly about the linear model, through which we will also develop the concepts of
- Hypothesis testing
- Model selection
- Variable/feature Selection

The Two-Cultures

- According to Leo Brieman (2001), there are "two cultures in the use of statistical modeling to reach conclusions from data ":
- Data Modeling Culture:

$$
x \rightarrow \text { model } \rightarrow y
$$

here the statistician decides on a model, learns its parameters, and assesses its fit

- Algorithmic Modeling Culture:

$$
x \rightarrow \text { unknown } \rightarrow y
$$

here the statistician applies an algorithm and asses its ability to predict unseen y-s given new x-s.

- This course is mostly model based

Statistics and Data Science

- Tibshirani \& Efron (1993):

Statistics is the science of learning from experience.

- Wikipedia (2021):

Statistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data.

- Wikipedia (2021):

Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from noisy, structured and unstructured data, and apply knowledge and actionable insights from data across a broad range of application domains.

Course outline and organizational

 matters
Organizational matters

- Instructor: Dr. Alon Kipnis
- Lectures: Tue. 18:30-21:00
- Teaching Assistant: Mr. Ben Galili
- Course Staff Email Address: alon.kipnis@idc.ac.il
- Office Hours: Monday 14:00-15:00
- TA Office Hours: will be posted on course website

Course pages

1. Lecture material (slides, sample code, homework etc.) on Moodle (https://moodle.idc.ac.il/2022/course/)
2. Other course-related announcements on Moodle
3. Discussions on Piazza
(https://piazza.com/class/kz5imoo7xi991)
4. Home assignments and grades will be posted on Moodle

This class is new

Cons:

- Expect more typos and errors in material than usual

Pros:

- Teaching stuff is more attentive to requests and suggestions: let us know if you have suggestions on how to improve your learning experience
- We are here to help. We look forward to seeing you in our office hours

Tips for succeeding in the class

- Review previous lecture before the beginning of the current one
- Discuss home assignments with peers and instructors; solve individually
- Attend office hours after reviewing relevant class material

Recording

- Lectures will be recorded. They will be available on Moodle.
- I strongly encourage you to attend the class live.

Time Zone

- Israel time (usually UTC+02:00)
- If you are currently not in Israel, please let us know what time zone you're in.

Prerequisites:

- Calculus and linear algebra
- Introductory course in probability/statistics
- Familiarity with Python and basic packages (numpy, scipy, pandas)

Textbooks

- The class does not follow one textbook in particular
- Here is a non-exhaustive list of relevant books and notes:
- Cosma Shalizi, "The Truth About Linear Regression", https://www.stat.cmu.edu/~cshalizi/TALR/
- Jonathan Taylor, "Stanford's STATS 203 lecture notes: Introduction to Regression and Analysis of Variance." 2005
- Emanuel Candes, "Stanford's 300C lecture notes: Theory of Statistics", 2019
- "Regression: Linear Models in Statistics", by Bingham and Fry, 2010.
- Related classes:
- Art Owen, Stanford STATS 305A: "Applied Statistics"
- Cosma Sahlizi, CMU 36-401: "Modern Regression"
- Rob Tibshirani and Trevor Hastie, Stanford STATS 315: "Introduction to Modern Applied Statistics"

Assessment and grading:

- Grading: 60\% regular homework assignments, 40% exam.
- Exam:
- About 3 hour time-limit
- Ideology: those who solved all home assignments individually will receive above 85% of exam's credit

Homeworks

- Constitute 60% of the final grade.
- Mix of theoretical (pen and paper) and coding exercises.
- Will be posted about every two weeks.
- Due before the weekly lecture
- Late submissions: 10% penalty for every 24 hours beyond the submission deadline, up to 72 hours after which the submission is no longer accepted.
- Regrade requests must be submitted within one week after grading has been published

Learning Community

- We encourage discussions between classmates, either on Piazza or elsewhere
- Please send us interesting related dataset and articles so we can share with everyone

Interacting with the Instructors

- Interacting with your instructors is a great way of promoting your career
- Several ways of doing so effectively:
- Participate in class discussions
- Attend office hours
- Ask/comment on Piazza

Tentative List of Topics

List of Topics

- The linear model (intro to linear regression, ordinary least squares)
- Math and probability review (distribution, multivariate normal distribution, F-distribution, goodness-of-fit, quadratic forms)
- The linear model (continued) (distributional properties of least squares solution, applications)
- Hypothesis testing (basics, one-sample, two-samples, A / B testing, controlled vs. uncontrolled)
- ANOVA (fixed and random effects)
- More linear regression (model-order selection, confidence and prediction bands, multiple regression)
- Other linear response models (logistic/probit, Poisson regression)
- Multiple Testing (FDR, methods of combining P-values)
- Variable selection
- Validation (cross validation) and permutation tests
- Quantile regression

Introduction to Linear Regression

The Math of Applied Statistics

- Very often, the data come in (x, y) pairs
- Given x we would like to predict y
- Many potential combinations exits...

Predicting from a distribution

- We want to guess (predict) the value of an unknown measurement y
- We propose a probabilistic model: the measurement is a RV $Y \sim P_{Y}$
- We seek to minimize

$$
\operatorname{MSE}(m):=\underline{\mathbb{E}\left[(Y-m)^{2}\right]}
$$

- Set $\mu(x):=\mathbb{E}[Y]$. We have

$$
\begin{aligned}
\operatorname{MSE}(m) & =\mathbb{E}\left[(Y-m)^{2}\right]=\mathbb{E}\left[(Y-\mu+\mu-m)^{2}\right] \\
& =\mathbb{E}\left[(Y-\mu)^{2}\right]+\mathbb{E}\left[(\mu-m)^{2}\right]+2(\mu-m) \mathbb{E}[Y-\mu] \\
& =\mathbb{E}\left[(Y-\mu)^{2}\right]+(\mu-m)^{2}+0 \quad(\mathbb{E}(Y)-\mu) \\
& =\operatorname{Var}[Y]+(\mu-m)^{2}
\end{aligned}
$$

$\operatorname{MSE}(m)$ is minimal when $\mu=m$.

Prediction from a conditional distribution

- Suppose a probabilistic model $Y \sim P_{Y}(x)$. The " best" predictor of y given x in the MSE sense is the conditional expectation:

$$
\mu(x)=\mathbb{E}[Y \mid X=x] .
$$

Indeed, using previous slide's logic:

$$
\mathbb{E}\left[(Y-\mu(x))^{2} \mid X=x\right] \leq \mathbb{E}\left[(Y-m(x))^{2} \mid X=x\right]
$$

for any function $m(x)$

- If X is random and we have a probability model $Y, X \sim P_{X, Y}$, then

$$
\mathbb{E}\left[(Y-\mu(X))^{2}\right] \leq \mathbb{E}\left[(Y-m(X))^{2}\right]
$$

The assumption $Y, X \sim P_{X, Y}$ gives rise to a correlation model for the dependency between the variables.

Linear Regression with One Predictor

- We restrict our prediction function $m(x)$ to have a linear (actually, affine) form $m(x)=\beta_{0}+\beta_{1} x$
- The MSE is a function of β_{0} and β_{1}

$$
\operatorname{MSE}\left(\beta_{0}, \beta_{1}\right)=\mathbb{E}\left[\left(\beta_{0}+\beta_{1} x-Y\right)^{2}\right]
$$

- We have

$$
\begin{gathered}
\mu(x)=\mathbb{E}(Y(X=x] \\
\operatorname{MSE}\left(\beta_{0}, \beta_{1}\right)=\mathbb{E}\left[(\mu(x)-Y)^{2}\right]+(\mu(x)-m(x))^{2}
\end{gathered}
$$

so that the linear predictor is optimal iff

$$
\left(\mu(x)=\mathbb{E}[Y \mid X=x]=\beta_{0}+\beta_{1} x,\right)
$$

In practice, this is rarely the case. George Box's dictum
"All models are wrong, but some are useful"
comes to mind here.

Linearity

- Suppose we are given measurements of height and weight of many individuals

	Height	Weight
$\mathbf{0}$	1.875714	109.720985
$\mathbf{1}$	1.747060	73.622732
$\mathbf{2}$	1.882397	96.497550
$\mathbf{3}$	1.821967	99.809504
$\mathbf{4}$	1.774998	93.598619
\ldots	\ldots	\ldots

- We propose a model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}, \quad\left(x_{i}, y_{i}\right)=\left(\text { height }_{i}, \text { height }_{i}\right)
$$

Beyond Simple Linearity

- A Linear model with p predictors and $p+1$ parameters:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\ldots+\beta_{p} x_{i p}+\epsilon_{i}, \quad i=1, \ldots, n
$$

We will also use the notation

$$
\mathbb{E}[Y \mid X=x]=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p} x_{p}
$$

- For example, home sale prices:

$$
\begin{array}{ll}
y_{i}= & \text { sale price of home } i \\
x_{i 1}= & \text { square meters of home } i \\
x_{i 2}=\quad \# \text { of bedrooms of home } i \\
\vdots= & \vdots \\
x_{i, 203}= & \# \text { of synagogues near home } i
\end{array}
$$

- Remarks:
- The model is linear in $\beta=\left(\beta_{0}, \ldots, \beta_{p}\right)$, not in x
- Would still be linear if we add $x_{i, 204}=\sqrt{\# \text { of bedrooms }}$
- Sum of linear models is also a linear model

Advanced Stats. for DS
Lecture 1
We started with the following slides: The math of applied stat. predicting from a distribution Predicting one RV from another Linear regression with Ono Predictor

Linearity
suppose Lou are given measurements of height weight of many individuals

We propose a model:

$y_{i}=\beta_{0}+\beta_{0} x_{i}$

$$
\begin{aligned}
& y_{i}=w_{\text {eight }}^{i} \\
& x_{i}=h_{\text {eight }}
\end{aligned}
$$

Polynomial Regression

$$
y_{i}=\beta_{0}+\beta_{i} x_{i}+\beta_{2} x_{i}^{2}+\ldots+\beta_{k} x_{i}^{k}+\varepsilon_{i} \quad x_{i} \in R
$$

in short:

$$
\mathbb{E}[Y \mid X=x]=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\ldots+\beta_{k} x^{k} \quad x \in \mathbb{R}
$$

- makes sense if the relationship between x and y is smooth
- Given data, he can approximate it arbitrarily well for large k (zero error if $k=n-1$)
- Perfect appx in linear models is suspicion. usually indicates an overfit.

Two Groups

- suppose be want to compare tho groups: male/femade, nickel vs copper, treatment vs. control
- We encode one of the group as 0 and the other one as 1:
for example:
(*) $\quad E(y \mid X=x]= \begin{cases}\beta_{0}+\beta_{1} & x=1 \\ \beta_{0}, & x=0\end{cases}$
- We can write (*) as

$$
\mathbb{E}[Y \mid X=x]=\beta_{0}+\beta_{1} x
$$

Notation: dummy variable

K groups $x_{1}=\left\{\begin{array}{l}1 \text { if group } 1 \\ 0 \\ \text { otherwise }\end{array} \quad x_{2}=\left\{\begin{array}{ll}1 & \text { if group 2 } \\ 0 & \text { otherwise }\end{array} . . . x_{k-1}= \begin{cases}1 & \text { if grip } k-1 \\ 0 & \text { otherwise }\end{cases}\right.\right.$

- we get:

$$
\mathbb{E}[y \mid X=x]=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k-1} x_{l e-1}
$$

(group 0 has mean β_{0}, mean of y roup $j>0$ is $\beta_{0}+\beta_{j}$)

- Equivalently:

$$
\mathbb{E}(Y \mid X=x\}=\beta_{0}+\beta_{1} f_{\{x=1\}}+\beta_{2} f_{\{x=2\}}+\ldots+p_{k-1} 1_{\{x=k \cdot \mid\}}
$$

Two-Phase Regression

- The slope of the line changes of a certain point x_{0}. For exams the performance
of an average haman kidney r decline ot age 40 . we express this as follows.

$$
\mathbb{E}[Y \mid X=x]=\beta_{0}+\beta_{1} x+\beta_{2}\left[x-x_{0}\right]_{x}
$$

$$
\left.z_{+}:=\max \alpha x 0, z\right\}=z \cdot I_{z>0}
$$

Multiple Regression

- Suppose that we want a relationship that changes over time; time goes for le periods we can use:

$$
E[Y \mid X=x]=\beta_{0}+\beta_{1}\left(x-t_{1}\right)_{+}+\beta_{2}\left(x-t_{2}\right)_{+}+\ldots+\beta_{k}\left(x-k_{k_{+}}\right.
$$

Periodic Functions
How cen n we handle cyclical date, egg. calender time?

$$
\begin{aligned}
\mathbb{E}[Y \mid X=x]= & \beta_{0}, \beta_{1}, \sin \left(2 \pi f_{0} x\right)+\beta_{2} \cos \left(2 \pi f_{0} x\right) \\
& +\beta_{3} \sin \left(2 \cdot 2 \pi f_{0} x\right)+\ldots
\end{aligned}
$$

Example: we want to predict traffic at a specific hour of the day based on features: time of day, day of week.

$$
\begin{aligned}
\mathbb{E}[\varphi \mid x & =x]=\beta_{0}+\beta_{1} \sin \left(2 \pi \frac{x}{24}\right)+\beta_{2} \cos \left(2 \pi \frac{x}{24}\right) \\
& +\beta_{3} \sin \left(2 \pi \cdot \frac{x}{7 \cdot 24}\right)+\beta_{4} \cos \left(2 \pi \frac{x}{724}\right)
\end{aligned}
$$

Concluding Remarks

- despite the models differences.
the underlying math is all linear
- Examples of non-linear models:

$$
\begin{aligned}
& -\mathbb{E}[Y \mid X=x]=\beta_{0}\left(1-e^{-\beta_{1} x}\right) \\
& -\mathbb{E}[Y \mid X=x]=\beta_{1} x_{1}+\beta_{2}\left(x_{2}-\beta_{3}\right)_{+} \\
& -\mathbb{E}[Y \mid X=x]=\sum_{j=1}^{6} \beta_{j} e^{-\frac{1}{2}\left\|x-\beta_{j}\right\|^{2}} \\
& -\mathbb{E}[Y \mid X=x]=\beta_{0}+\beta_{1} \sin \left(2 \pi\left(x-\beta_{2}\right)\right)
\end{aligned}
$$

[^0]: By Ryan Dezember for The Wall Street
 June 19, 2019 11:10 am E

[^1]: Zillow is sitting on thousands of houses worth less than what the company paid for

