
Chapter 1

Function Secret Sharing and
Homomorphic Secret Sharing

A secret sharing scheme enables a dealer holding a secret s to split s into m shares,
such that certain subsets of the shares can be used to reconstruct the secret, while
others reveal nothing about it. Secret sharing is a fundamental cryptographic prim-
itive whose applications span almost all sub-areas of the field. A simple and useful
secret sharing scheme, called additive secret sharing, splits a secret s from a finite
Abelian group G into m shares s1, . . . , sm 2 G that are picked uniformly at random
subject to the constraint that they add up to s. Equivalently, one can pick the shares
s1, . . . , sm�1 uniformly at random from G and let sm s �

Pm�1
i=1 si. The secret s

can be reconstructed by adding all m shares, while every strict subset of the shares
reveal nothing about s. A useful extra feature of additive secret sharing is that it is
additively homomorphic: if we distribute shares of k � 2 secrets between m parties,
the parties can locally add their shares of the k secrets and obtain a valid additive
sharing of the sum of the secrets.

Function Secret Sharing (FSS) and Homomorphic Secret Sharing (HSS) are
two extensions of standard secret sharing that enable richer forms of homomorphic
computations on secrets. We describe both notions informally below.

Function Secret Sharing. An m-party FSS scheme splits a function f : {0, 1}n !
G from a function class F into m additive shares fi : {0, 1}n ! G, each represented
by a key ki, where every strict subset of the keys ki hides f . The correctness
requirement is that the m functions fi represented by the keys add up to f . Namely,
there is a function Eval (defining the function fi represented by ki), such that for
every x 2 {0, 1}n we have f (x) =

P
i Eval(ki, x). A trivial solution is to use additive

secret sharing to independently share each entry in the truth-table of f . However,

3

4 CHAPTER 1. FSS AND HSS

this would lead to keys ki consisting of 2n group elements. The challenge is to
design e�cient FSS schemes in which the key size grows polynomially with the
input length n. The short keys ki can be viewed as compressed additive shares of
the truth-table of f . This is only possible for classes F of structured functions f
that have a short (polynomial-size) description, and inevitably requires one to settle
for computational hiding of f .

Homomorphic Secret Sharing. HSS extends the above example of additive se-
cret sharing by supporting the evaluation of other (possibly nonlinear) functions on
the shares. It can be viewed as a dual notion of FSS where the roles of the function
and input are reversed. Concretely, an HSS scheme splits an input x 2 {0, 1}n into
m shares xi such that each strict subset of the shares hides the input; moreover, one
can locally evaluate a function f 2 F on the input shares xi such that the output
shares add up to f (x). That is, there exists a local evaluation function Eval such
that for every f 2 F and shares xi of x we have f (x) =

P
i Eval(xi, f).

In recent years, a variety of FSS and HSS schemes with di↵erent e�ciency and
security features have been discovered and used for a wide array of applications.
In this chapter, we give an overview of these constructions and applications.

Organization. We start, in Section 1.1, by formally defining the notions of FSS,
HSS, and the related notion of pseudorandom correlation generators. In Section 1.2
we give an overview of some of the main constructions of FSS and HSS schemes,
classifying them as low-end constructions (concretely e�cient constructions from
weak assumptions for restricted function classes), mid-range constructions, and
high-end constructions (from stronger assumptions and for general functions). We
conclude in Section 1.3 with a non-comprehensive list of applications of FSS and
HSS as of the writing of this chapter (2021).

1.1 Definitions and Discussion

In this section, we introduce three main definitions: Function Secret Sharing (FSS),
Homomorphic Secret Sharing (HSS), and Pseudorandom Correlation Generators
(PCG), a related primitive that captures some of the applications of FSS and HSS.

Defining FSS and HSS. Similarly to standard secret sharing schemes, FSS and
HSS must satisfy two kinds of requirements: (1) Correctness, captured by a homo-
morphic evaluation guarantee, and (2) Privacy, requiring that subsets of shares do
not reveal the secret. When formalizing these notions, there are several definitional

1.1. DEFINITIONS AND DISCUSSION 5

choices to be made that o↵er di↵erent tradeo↵s between simplicity and generality.
We present two kinds of definitions that target di↵erent applications:

1. An FSS definition which is most suitable to simple function classes that arise
in practical applications;

2. A more general HSS definition which is particularly convenient for a theory-
oriented study and naturally supports a multi-input variant.

We start with an informal overview of these two definitions, and defer the for-
mal version to the end of this section.

Gen

f 2 F

k1 k2

Eval Eval

x 2 {0, 1}n

1 2

y1 y2

⌃

f (x)

Figure 1.1.1: Representation of a 2-party function secret sharing scheme for a
function class F = { f : {0, 1}n ! G}. ⌃ denotes the sum over G.

• Function Secret Sharing (FSS) [20]. Suppose we are given a class F of
e�ciently computable and succinctly described functions f : {0, 1}n ! G.
Is it possible to split an arbitrary function f 2 F into m functions f1, . . . , fm
such that: (1) each fi is described by a short key ki that enables its e�cient
evaluation, (2) strict subsets of the keys completely hide f , and (3) f (x) =Pm

i=1 fi(x) (on every input x)? We refer to a solution to this problem as a
function secret sharing (FSS) scheme for F . We provide on Figure 1.1.1 a
pictural representation of the algorithms of a 2-party FSS scheme.

6 CHAPTER 1. FSS AND HSS

• Homomorphic Secret Sharing (HSS) [21]. A (m-party) HSS scheme for
class of programs1

P randomly splits an input x into shares2 (x1, . . . , xm)
such that: (1) each xi is polynomially larger than x, (2) subsets of shares
xi hide x, and (3) there exists a polynomial-time local evaluation algorithm
Eval such that for any “program” P 2 P (e.g., a boolean circuit, formula or
branching program), the output P(x) can be e�ciently reconstructed from
Eval(x1, P), . . . ,Eval(xm, P). By default, we require the reconstruction to be
additive over a finite Abelian group G.

On the di↵erence between FSS and HSS. While any FSS scheme can be viewed
as an HSS scheme for a suitable class of programs and vice versa, switching the
roles of the program and input is often unnatural. We will choose the notion that
gives rise to the simpler formulation of each construction or application. When
considering universal classes of programs, such as Boolean circuits, a technical
di↵erence between the two notions is that FSS allows the share size to grow with
the size of the program whereas HSS restricts the share size to grow only with the
size of the input to the program. Finally, HSS admits a natural multi-input vari-
ant (where homomorphic evaluation can apply jointly to shared secrets originating
from two or more parties), whereas in FSS the secret function always originates
from a single source.

Pseudorandom correlation generators. In this section, we also introduce the
notion of a pseudorandom correlation generator (PCG), which turns out to be
closely related to FSS/HSS. Informally, a PCG is a pair of algorithms denoted
(Gen,Expand), where Gen outputs a pair of short, correlated seeds, and Expand

allows to locally stretch these seeds into long, correlated pseudorandom strings.
The PCG securely realizes a given target correlation (e.g., n instances of random
oblivious transfer) if the expanded seeds are indistinguishable from the target cor-
relation even to insiders who obtain one of the two seeds. While the notion of
PCG is not visibly similar to FSS/HSS, there is in fact a two-way relation between
the notions: HSS schemes can be used to construct (certain) useful PCGs and vice
versa.

E�cient PCG constructions build heavily both on the succinctness and non-
interactivity features of FSS/HSS, and enable practical compression of correlated

1Function vs. program: Note that in FSS we will consider simple classes of functions where
each function has a unique description, whereas in HSS we consider functions with many programs
computing it. For this reason we refer to “function” for FSS and “program” for HSS.

2 fi vs. xi: We maintain the subscript/superscript conventions of existing works (primarily [20,
25]). Note that superscript notation is used in HSS where one can consider shares of multiple inputs,
x j 7! (x1

j , . . . , x
m
j).

1.1. DEFINITIONS AND DISCUSSION 7

randomness that can be used to speed up protocols for secure computation.

1.1.1 Basic Notation

We denote the security parameter by �.

Modeling function families. A function family is defined by a pair F = (PF , EF),
where PF ✓ {0, 1}⇤ is an infinite collection of function descriptions f̂ , and EF :
PF ⇥ {0, 1}⇤ ! {0, 1}⇤ is a polynomial-time algorithm defining the function de-
scribed by f̂ . Concretely, each f̂ 2 PF describes a corresponding function f :
D f ! R f defined by f (x) = EF (f̂ , x). We assume by default that D f = {0, 1}n

for a positive integer n (though will sometimes consider inputs over non-binary al-
phabets) and always require R f to be a finite Abelian group, denoted by G. When
there is no risk of confusion, we will sometimes write f instead of f̂ and f 2 F
instead of f̂ 2 PF . We assume that f̂ includes an explicit description of both D f
and R f as well as a size parameter S f̂ .

1.1.2 Function Secret Sharing: Targeting Applications

We next present a targeted definition of FSS, which lies most in line with the use
of FSS within current practical applications. The definition follows [22], extending
the original definition from [20] by allowing a general specification of allowable
leakage: i.e., partial information about the function that can be revealed.

Recall in the language of FSS, we consider a client holding a secret function
f 2 F who splits f into shares fi supporting homomorphic evaluation on inputs x
in the domain of f . We use notation of the shares fi described by keys ki.

Modeling leakage. We use a function Leak : {0, 1}⇤ ! {0, 1}⇤ to capture the allow-
able leakage, where Leak(f) is interpreted as the partial information about f that
can be leaked. When Leak is omitted it is understood to output the input domain
D f and the output domain R f . This will be su�cient for most classes considered;
for some classes, one also needs to leak the size S f . But, one can consider more
general choices of Leak, which allow a tradeo↵ between e�ciency/feasibility and
revealed information. (E.g., the construction of FSS for decision trees in [22] leaks
the topology of the tree but hides the labels; see Section 1.2.)

Definition 1.1.1 (FSS: Syntax). An m-party function secret sharing (FSS) scheme
is a pair of algorithms (Gen,Eval) with the following syntax:

• Gen(1�, f̂) is a PPT key generation algorithm, which on input 1� (security
parameter) and f̂ 2 {0, 1}⇤ (description of a function f) outputs an m-tuple
of keys (k1, . . . , km). We assume that f̂ explicitly contains an input length 1n,
group description G, and size parameter.

8 CHAPTER 1. FSS AND HSS

• Eval(i, ki, x) is a polynomial-time evaluation algorithm, which on input i 2
[m] (party index), ki (key defining fi : {0, 1}n ! G) and x 2 {0, 1}n (input for
fi) outputs a group element yi 2 G (the value of fi(x), the i-th share of f (x)).

When m is omitted, it is understood to be 2.

Definition 1.1.2 (FSS: Requirements). Let F = (PF , EF) be a function family
and Leak : {0, 1}⇤ ! {0, 1}⇤ be a function specifying the allowable leakage. Let
m (number of parties) and t (secrecy threshold) be positive integers. An m-party
t-secure FSS for F with leakage Leak is a pair (Gen,Eval) as in Definition 1.1.1,
satisfying the following requirements.

• Correctness: For all f̂ 2 PF describing f : {0, 1}n ! G, and every x 2
{0, 1}n, if (k1, . . . , km) Gen(1�, f̂) then Pr

hPm
i=1 Eval(i, ki, x) = f (x)

i
= 1.

• Secrecy: For every set of corrupted parties S ⇢ [m] of size t, there exists
a PPT algorithm Sim (simulator), such that for every sequence f̂1, f̂2, . . . of
polynomial-size function descriptions from PF , the outputs of the following
experiments Real and Ideal are computationally indistinguishable:

– Real(1�): (k1, . . . , km) Gen(1�, f̂�); Output (ki)i2S .

– Ideal(1�): Output Sim(1�, Leak(f̂�)).

When Leak is omitted, it is understood to be the function Leak(f̂) = (1n, S f̂ ,G)
where 1n, S f̂ , and G are the input length, size, and group description contained in
f̂ . When t is omitted it is understood to be m � 1.

A useful instance of FSS, introduced by Gilboa and Ishai [57], is a distributed
point function (DPF). A DPF can be viewed as a 2-party FSS for the function class
F consisting of all point functions, namely all functions f : {0, 1}n ! G that
evaluate to 0 on all but at most one input.

Definition 1.1.3 (Distributed Point Function). A point function f↵,�, for ↵ 2 {0, 1}n

and � 2 G, is defined to be the function f : {0, 1}n ! G such that f (↵) = � and
f (x) = 0 for x , ↵. We will sometimes refer to a point function with |�| = 1
(resp., |�| > 1) as a single-bit (resp., multi-bit) point function. A Distributed Point
Function (DPF) is an FSS for the family of all point functions, with the leakage
Leak(f̂) = (1n,G).

A concrete security variant. For the purpose of describing and analyzing some
FSS constructions, it is sometimes convenient (e.g., in [22]) to consider a finite
family F of functions f : D f ! R f sharing the same (fixed) input domain and

1.1. DEFINITIONS AND DISCUSSION 9

output domain, as well as a fixed value of the security parameter �. We say that
such a finite FSS scheme is (T, ✏)-secure if the computational indistinguishability
requirement in Definition 1.1.2 is replaced by (T, ✏)-indistinguishability, namely
any size-T circuit has at most an ✏ advantage in distinguishing between Real and
Ideal. When considering an infinite collection of such finite F , parameterized by
the input length n and security parameter �, we require that Eval and Sim be each
implemented by a (uniform) PPT algorithm, which is given 1n and 1� as inputs.

1.1.3 Homomorphic Secret Sharing: A General Definition

Recall that HSS is a dual form of FSS. We now consider more general multi-input
HSS schemes that support a compact evaluation of a function F on shares of inputs
x1, . . . , xn that originate from di↵erent clients. More concretely, each client i ran-
domly splits its input xi between m servers using the algorithm Share, so that xi is
hidden from any t colluding servers (we assume t = m� 1 by default). Each server
j applies a local evaluation algorithm Eval to its share of the n inputs, and obtains
an output share y j. The output F(x1, . . . , xn) is reconstructed by applying a decod-
ing algorithm Dec to the output shares (y1, . . . , ym). To avoid triviality, we consider
various restrictions on Dec that force it to be “simpler” than direct computation of
F.

Finally, for some applications it is useful to let F and Eval take an additional
input x0 that is known to all servers. This is necessary for a meaningful notion of
single-input HSS (with n = 1) [21], and function secret sharing [20, 22]. Typically,
the extra input x0 will be a description of a function f applied to the input of a
single client, e.g., a description of a circuit, branching program, or low-degree
polynomial. For the case of FSS, the (single) client’s input is a description of a
program and the additional input x0 corresponds to a domain element.

We now give our formal definition of general HSS. We give a definition in
the plain model; this definition can be extended in a natural fashion to settings with
various forms of setup (e.g., common public randomness or a public-key infrastruc-
ture, as considered in [23]). We follow the exposition of [25]. Recall subscripts
denote input (client) id and superscripts denote share (server) id.

Definition 1.1.4 (HSS). An n-client, m-server, t-secure homomorphic secret shar-
ing scheme for a function F : ({0, 1}⇤)n+1

! {0, 1}⇤, or (n,m, t)-HSS for short, is a
triple of PPT algorithms (Share,Eval,Dec) with the following syntax:

• Share(1�, i, x): On input 1� (security parameter), i 2 [n] (client index), and
x 2 {0, 1}⇤ (client input), the sharing algorithm Share outputs m input shares,
(x1, . . . , xm).

10 CHAPTER 1. FSS AND HSS

• Eval
�
j, x0, (x j

1, . . . , x
j
n)
�
: On input j 2 [m] (server index), x0 2 {0, 1}⇤ (com-

mon server input), and x j
1, . . . , x

j
n (jth share of each client input), the evalua-

tion algorithm Eval outputs y j
2 {0, 1}⇤, corresponding to server j’s share of

F(x0; x1, . . . , xn).

• Dec(y1, . . . , ym): On input (y1, . . . , ym) (list of output shares), the decoding
algorithm Dec computes a final output y 2 {0, 1}⇤.

The algorithms (Share,Eval,Dec) should satisfy the following correctness and
security requirements:

• Correctness: For any n + 1 inputs x0, . . . , xn 2 {0, 1}⇤,

Pr
"
8i 2 [n] (x1

i , . . . , x
m
i) Share(1�, i, xi)

8 j 2 [m] y j
 Eval

�
j, x0, (x j

1, . . . , x
j
n)
� : Dec(y1, . . . , ym)

= F(x0; x1, . . . , xn)

#
= 1.

Alternatively, in a statistically correct HSS the above probability is at least
1 � µ(�) for some negligible µ and in a �-correct HSS (or �-HSS for short) it
is at least 1 � � � µ(�), where the error parameter � is given as an additional
input to Eval and the running time of Eval is allowed to grow polynomially
with 1/�.

• Security: Consider the following semantic security challenge experiment
for corrupted set of servers T ⇢ [m]:

1: The adversary gives challenge index and inputs (i, x, x0) A(1�), with
|x| = |x0|.

2: The challenger samples b {0, 1} and (x1, . . . , xm) Share(1�, i, x̃),

where x̃ =

8>><
>>:

x if b = 0
x0 else

.

3: The adversary outputs a guess b0 A((x j) j2T), given the shares for
corrupted T .

Denote by Adv(1�,A,T) := Pr[b = b0]�1/2 the advantage ofA in guessing
b in the above experiment, where probability is taken over the randomness
of the challenger and ofA.

For circuit size bound S = S (�) and advantage bound ↵ = ↵(�), we say that
an (n,m, t)-HSS scheme ⇧ = (Share,Eval,Dec) is (S ,↵)-secure if for all
T ⇢ [m] of size |T | t, and all non-uniform adversaries A of size S (�), we
have Adv(1�,A,T) ↵(�). We say that ⇧ is:

– computationally secure if it is (S , 1/S)-secure for all polynomials S ;

1.1. DEFINITIONS AND DISCUSSION 11

– statistically ↵-secure if it is (S ,↵)-secure for all S ;
– statistically secure if it statistically ↵-secure for some negligible ↵(�);
– perfectly secure if it is statistically 0-secure.

Remark 1.1.5 (Unbounded HSS). Definition 1.1.4 treats the number of inputs n
as being fixed. We can naturally consider an unbounded multi-input variant of
HSS where F is defined over arbitrary sequences of inputs xi, and the correctness
requirement is extended accordingly. We denote this flavor of multi-input HSS
by (⇤,m, t)-HSS. More generally, one can allow all three parameters n,m, t to be
flexible, treating them as inputs of the three algorithms Share,Eval,Dec.

Remark 1.1.6 (Comparing to FSS Definition). Function secret sharing (FSS) as
per Definition 1.1.2 can be cast in the definition above as (1,m)-HSS for the uni-
versal function F(x; P) = P(x), where P 2 P is a program given as input to the
client and x is the common server input.

Note the security requirement for HSS in Definition 1.1.4 is expressed as an
indistinguishability guarantee, whereas the FSS definition from the previous sec-
tion (Definition 1.1.2) referred instead to e�cient simulation given leakage on the
secret data. However, the two flavors are equivalent for every function family F
and leakage function Leak for which Leak can be e�ciently inverted; that is, given
Leak(f̂) one can e�ciently find f̂ 0 such that Leak(f̂ 0) = Leak(f̂). Such an inver-
sion algorithm exists for all instances of F and Leak considered in existing works.

A careful reader might observe at this stage that Definition 1.1.4 can be trivially
realized by setting Eval to be the identity function (in which case Dec reconstructs
(x1, · · · , xn) and outputs F(x0; x1 · · · xn)). To make HSS useful, we must impose
requirements on the decoding algorithm.

Definition 1.1.7 (Additive and compact HSS). We say that an (n,m, t)-HSS scheme
⇧ = (Share,Eval, Dec) is:

• Additive if Dec outputs the exclusive-or of the m output shares. Alterna-
tively, if Dec interprets its m arguments as elements of an Abelian group G
(instead of bit strings), and outputs their sum in G.3 Note that this require-
ment is similar to the correctness property for our definition of FSS (see
Definition 1.1.2).

• Compact if the length of the output shares is sublinear in the input length
when the inputs are su�ciently longer than the security parameter. Con-
cretely:

3In this case, we think of the function F and all HSS algorithms Share,Eval,Dec as implicitly
receiving a description of G as an additional input.

12 CHAPTER 1. FSS AND HSS

– We say that ⇧ is g(�, `)-compact if for every �, `, and every inputs
x0, x1, . . . , xn 2 {0, 1}`, the length of each output share obtained by
applying Share with security parameter � and then Eval is at most
g(�, `).

– We say that ⇧ is compact if it is g(�, `)-compact for g that satisfies the
following requirement: There exists a polynomial p(·) and sublinear
function g0(`) = o(`) such that for any � and ` � p(�) we have g(�, `)
g0(`).

In the case of perfect security or statistical ↵-security with constant ↵, we
eliminate the parameter � and refer to ⇧ as being g(`)-compact.

Remark 1.1.8 (Other notions of compactness). One could alternatively consider
a stronger notion of compactness, requiring that the length of each output share is
of the order of the output length (whereas Definition 1.1.7 requires merely for it
to be sublinear in the input size). Every additive HSS scheme satisfies this notion.
HSS schemes that satisfy this notion but are not additive were used in the con-
text of private information retrieval and locally decodable codes in [7]. A di↵erent
way of strengthening the compactness requirement is by restricting the computa-
tional complexity of Dec, e.g., by requiring it to be quasi-linear in the length of
the output. See Section 1.3.1 (worst-case to average-case reductions) for motiving
applications.

Remark 1.1.9 (Special HSS Cases).

• We will sometimes be interested in additive (multi-input) HSS for a finite
function F, such as the AND of two bits; this can be cast into Definition 1.1.4
by just considering an extension F̂ of F that outputs 0 on all invalid inputs.
(Note that our notion of compactness is not meaningful for a finite F.)

• As noted above, the common server input x0 is often interpreted as a “pro-
gram” P from a class of programs P (e.g., circuits or branching programs),
and F is the universal function defined by F(P; x1, . . . , xn) = P(x1, . . . , xn).
We refer to this type of HSS as HSS for the class P.

1.1.4 On the Output Decoding Structure of FSS/HSS

In the definitions above, we focused on FSS with additive reconstruction (that is,
f (x) =

P
i Eval(fi, x) over an abelian group G), and on HSS with either additive

reconstruction, or general reconstruction but compact shares. In this section, we
discuss and motivate these requirements.

1.1. DEFINITIONS AND DISCUSSION 13

Of course, one can consider FSS/HSS with respect to many choices of output
decoding structure. Based on the structure of the chosen decoding process, the
corresponding scheme will have very di↵erent properties: more complex decod-
ing procedures open the possibility of achieving FSS/HSS for more general classes
of functions, but place limits on the applicability of the resulting scheme. Many
choices for the structure of the output decoding function yield uninteresting no-
tions, as we now discuss (following [20]). For convenience, we adopt the language
of FSS, but similar considerations hold for HSS.

Arbitrary reconstruction. Consider, for example, FSS with no restriction on
the reconstruction procedure for parties’ output shares. Such wide freedom renders
the notion non-meaningfully trivial. Indeed, for any e�cient function family F ,
one could generate FSS keys for a secret function f 2 F simply by sharing a
description of f interpreted as a string, using a standard secret sharing scheme.
The evaluation procedure on any input x will simply output x together with the
party’s share of f , and the decoding procedure will first reconstruct the description
of f , and then compute and output the value f (x).

This construction satisfies correctness and security as described informally
above (indeed, each party’s key individually reveals no information on f). But,
the scheme clearly leaves much to be desired in terms of utility: From just one
evaluation, the entire function f is revealed to whichever party receives and re-
constructs these output shares. At such point, the whole notion of function secret
sharing becomes moot.

“Function-private” output shares. Instead, from a function secret sharing
scheme, one would hope that parties’ output shares fi(x) for input x do not reveal
more about the secret function f than is necessary to determine f (x). That is,
we may impose a “function privacy” requirement on the reconstruction scheme,
requiring that pairs of parties’ output shares for each input x can be simulated
given just the corresponding outputs f (x).

This requirement is both natural and beneficial, but by itself still allows for
undesired constructions. For example, given a secret function f , take one FSS
key to be a garbled circuit of f , and the second key as the information that en-
ables translating inputs x to garbled input labels. This provides a straightforward
function-private solution for one output evaluation, and can easily be extended to
the many-output case by adding shared secret randomness to the parties’ keys.4

Yet this construction (and thus definition) is unsatisfying: although the evaluate
output shares fi(x) now hide f , their size is massive—for every output, comparable
to a copy of f itself. (Further, this notion does not give any cryptographic power

4Namely, for each new x, the parties will first use their shared randomness to coordinately reran-
domize the garbled circuit of f and input labels, respectively.

14 CHAPTER 1. FSS AND HSS

beyond garbled circuits.)

Succinct, function-private output shares. We further restrict the scheme,
demanding additionally that output shares be succinct: i.e., comparable in size to
the function output.

This definition already captures a strong, interesting primitive. For example,
as described in Section 1.3, achieving such an FSS scheme for general functions
implies a form of communication-e�cient secure multi-party computation. Ad-
ditional lower bounds on this notion are shown in [25]. However, there is one
final property that enables an important class of applications, but which is not yet
guaranteed: a notion of share compressibility.

More specifically: One of the central application regimes of FSS [57, 20, 22] is
enabling communication-e�cient secure (m-server) Private Information Retrieval
(PIR). Intuitively, to privately recover an item xi from a database held by both
servers, one can generate and distribute a pair of FSS keys encoding a point func-
tion fi whose only nonzero output is at secret location i. Each server then responds
with a single element, computed as the weighted sum of each data item x j with
the server’s output share of the evaluation fi(x j). Correctness of the DPF scheme
implies that the xor of the two servers’ replies is precisely the desired data item xi,
while security guarantees the servers learn nothing about the index i. But most im-
portantly, the linear structure of the DPF reconstruction enabled the output shares
pertaining to all the di↵erent elements of the database to be compressed into a
single short response.

On the other hand, consider, for example, the PIR scenario but where the
servers instead hold shares of the function fi with respect to a bitwise AND recon-
struction of output shares in the place of xor/addition. Recovery of the requested
data item xi now implies computing set intersection—and thus requires commu-
nication complexity equal to the size of the database [66]! We thus maintain the
crucial property that output shares can be combined and compressed in a meaning-
ful way. To do so, we remain in stride with the linearity of output share decoding.

Primary Focus: Linear share decoding. We focus predominantly on the set-
ting of FSS where the output decoder is a linear function of parties’ shares. That
is, we assume the output shares fi(x) lie within an Abelian group G and consider
a decoding function Dec : Gm

! G linear in G. This clean, intuitive structure in
fact provides the desired properties discussed above: Linearity of reconstruction
provides convenient share compressibility. Output shares must themselves be ele-
ments of the function output space, immediately guaranteeing share succinctness.
And as shown in [20], the linear reconstruction in conjunction with basic key secu-
rity directly implies function privacy. Unless otherwise specified we will implicitly

1.1. DEFINITIONS AND DISCUSSION 15

take an “FSS scheme” (or HSS) to be one with a linear reconstruction procedure.

1.1.5 Pseudorandom Correlation Generators

In this section we put forward a general notion of pseudorandom correlation gener-
ator (PCG). At a high level, a PCG for some target ideal correlation takes as input a
pair5 of short, correlated seeds and outputs long correlated pseudorandom strings,
where the expansion procedure is deterministic and can be applied locally.

For correctness we require that the expanded output of a PCG is indistinguish-
able from truly random correlated strings that are sampled from the ideal corre-
lation. For security it would be natural and straightforward to require that we can
securely replace long correlated strings by short correlated seeds in any secure pro-
tocol execution. Unfortunately, as shown in [16], this security requirement would
be impossible to meet. Therefore, following [16], we introduce (and subsequently
prove useful) an indistinguishability-based security notion. Namely, we require
that an adversary given access to one of the short seeds k�, cannot distinguish the
pseudorandom string R1�� from a pseudorandom string that is chosen at random
conditioned on (R0,R1) being appropriately correlated (where R� = PCG(k�) is
the expansion of the short seed k�). In other words, an adversary given access to
a short seed cannot learn more about the other party’s pseudorandom string than
what is obvious given access to its own pseudorandom output string.

In order to formally define PCGs, we first introduce the concept of a corre-
lation generator as a PPT algorithm outputting correlated strings. We will use a
correlation generation generator to define an ideal target correlation (R0,R1). For
simplicity, we assume that (R0,R1) are two bit-strings of the same length n, though
in some of the useful instances instances we will discuss they are more naturally
interpreted as vectors over some finite ring.

Definition 1.1.10 (Correlation Generator). A PPT algorithm C is called a corre-
lation generator, if C on input 1� outputs a pair of strings in {0, 1}n ⇥ {0, 1}n for
n = n(�) 2 poly(�).

Our security definition requires the target correlation to satisfy a technical re-
quirement, which roughly says that it is possible to e�ciently sample from the
conditional distribution of R0 given R1 = r1 and vice versa.

Definition 1.1.11 (Reverse-sampleable Correlation Generator). Let C be a corre-
lation generator. We say C is reverse sampleable if there exists a PPT algorithm

5While both the notion and some of the constructions extend to an arbitrary number of parties,
here we focus on the 2-party case for simplicity.

16 CHAPTER 1. FSS AND HSS

RSample such that for � 2 {0, 1} the correlation obtained via:

{(R00,R
0

1) |(R0,R1) $
 C(1�),R0� := R�,R01��

$
 RSample(�,R�)}

is computationally indistinguishable from C(1�).

The following definition of pseudorandom correlation generators generalizes
an earlier definition of pseudorandom VOLE generator in [14].

Definition 1.1.12 (Pseudorandom Correlation Generator (PCG) [16]). Let C be
a reverse-sampleable correlation generator. A PCG for C is a pair of algorithms
(PCG.Gen,PCG.Expand) with the following syntax:

• PCG.Gen(1�) is a PPT algorithm that given a security parameter �, outputs
a pair of seeds (k0, k1);

• PCG.Expand(�, k�) is a polynomial-time algorithm that given party index
� 2 {0, 1} and a seed k�, outputs a bit string R� 2 {0, 1}n.

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

• Correctness. The correlation obtained via:

{(R0,R1) |(k0, k1) $
 PCG.Gen(1�), (R� PCG.Expand(�, k�))�=0,1}

is computationally indistinguishable from C(1�).

• Security. For any � 2 {0, 1}, the following two distributions are computa-
tionally indistinguishable:

{(k1��,R�) | (k0, k1) $
 PCG.Gen(1�),R� PCG.Expand(�, k�)} and

{(k1��,R�) | (k0, k1) $
 PCG.Gen(1�),R1�� PCG.Expand(�, k1��),

R�
$
 RSample(�,R1��)}

where RSample is the reverse sampling algorithm for correlation C.

Note that the above definition is trivial to achieve in general: We can let
PCG.Gen on input 1� return (R0,R1) C(1�), and simply define Expand to be
the identity. Typically, we will be interested in non-trivial constructions of PCGs,
in which PCG.Expand stretches a short seed to a long output. As a simple exam-
ple, a standard pseudorandom generator G : {0, 1}� ! {0, 1}n(�) naturally defines
the following PCG for the target correlation C(1�) = (r, r), where r 2R {0, 1}n(�):

1.1. DEFINITIONS AND DISCUSSION 17

PCG.Gen output a pair of identical random seeds and PCG.Expand applies G
locally on each seed. In the following we will consider more involved construc-
tions of PCGs for useful target correlations where neither of the outputs determine
the other. These include Oblivious Transfer (OT) correlations, Oblivious Linear
Evaluation (OLE) correlations, and (authenticated) multiplication triples.

1.1.6 Homomorphic Secret Sharing vs. Pseudorandom Correlation
Generators

In the following we show that HSS for a class of functions of the form { f � PRG},
where PRG is a pseudorandom generator, implies PCG for a correlation related to
f . In Section 1.2.4, we will show a partial converse relation: PCGs for polynomial
correlations imply HSS for polynomials.

The high-level strategy is as follows: We combine a standard pseudorandom
generator (PRG), expanding a short random seed into a long pseudorandom string,
with a suitable HSS scheme, which allows to locally compute the target correlation
on shares of a random input. More precisely, we consider the special case of addi-
tive correlations, where R0, R1 are uniformly distributed subject to R0 + R1 = f (X)
for a random input X and fixed function f . Now, consider an HSS scheme with
additive reconstruction for f � PRG. This gives rise to the following PCG con-
struction: During key generation a short seed k is shared between the players (as
HSS shares). For expansion, the players can then locally evaluate f (PRG(k)) via
the HSS operations. By the correctness of the HSS that indeed gives outputs R0,R1
with R0 + R1 = f (X), where X = PRG(k). In this section we formally prove that
the described construction meets the PCG requirements.

To formalize the above outline, we first give a generalized definition of a pseu-
dorandom generator, then formally define additive correlations corresponding to a
function, before presenting the construction.

Let R be a ring and `, n 2 N. We consider distributions D` over a ring R` and
write X

$
 D

`(R) or simply X
$
 D

` (if R is clear from the context) to denote
sampling from R` viaD`. Note that the following definition ofD`-pseudorandom
generator coincides with the standard definition of a PRG, if we choose D`(R) =
U
`(R). We use this more general notion of a PRG, as for our PRG instantiation

from LPN the seed is not chosen uniformly at random.

Definition 1.1.13 (D`-Pseudorandom Generator). Let R be a ring (parametrized
implicitly by �) and let D` be a distribution on R`. We say PRG : R` ! Rn is a
D
`-pseudorandom generator (PRG), if the following two distributions are compu-

18 CHAPTER 1. FSS AND HSS

• PCG.Setup(1�): output (sk, {ek�}�2{0,1}) HSS.Gen(1�).

• PCG.Gen(sk): Sample r D`; output (k0, k1) HSS.Share(sk, r).

• PCG.Expand(�, ek�, k�, f): Output R� HSS.Eval(�, ek�, k�, f �
PRG).

Figure 1.1.2: PCG for correlation CF . Here, PRG is a D`-PRG and HSS =

(HSS.Gen,HSS.Share,HSS.Eval) an HSS for the family of functions FHSS :=
{ f � PRG : r 7! f (PRG(r)) | f 2 F }.

tationally indistinguishable:
⇢
Y | X

$
 D

`(R),Y := PRG(X)
�

and
⇢
Y | Y

$
 U

n(R)
�
.

We will consider additive correlations corresponding to a family of functions
F . Such a correlation is generated by outputting an additive secret-sharing of a
function from f 2 F applied to a source of randomness.

Definition 1.1.14 (Correlation Generators for Additive Correlations). Let R be a
ring. Let n,m 2 N and F ✓ { f : Rn

! R
m
} be a family of functions. Then

we define a correlation generator CF for F as follows: On input 1� and f 2 F
the correlation generator CF samples X

$
 U

n(R), and returns a pair (R0,R1) 2
R

m
⇥R

m, which is distributed uniformly at random conditioned on R0+R1 = f (X).

Note that CF is reverse-sampleable for any family of functions F , as given
a function f 2 F and a share R�, one can draw an input X

$
 U

n(R) and set
R1�� := R� � f (X). Further, note that it is straightforward to includes shares of the
inputs in the correlation by considering the family F 0 := { f 0 : Rn

! R
n+m, X 7!

(X, f (X)) | f 2 F }.

Definition 1.1.15 (HSS satisfying Pseudorandomness of Outputs). We say an HSS
HSS = (HSS.Gen,HSS.Share,HSS.Eval) for a function family F := { f : Rn

!

R
m
} satisfies pseudorandomness of outputs, if for all f : Rn

! R
m
2 F , (sk,

{ek�}�2{0,1}) HSS.Gen(1�), X
$
 U

n(R), (k0, k1) $
 Share(sk, X), and � 2

{0, 1} the output R�
$
 HSS.Eval(�, ek�, k�, f) is distributed computationally

close to uniformly at random over the output space.

Note that if f (Un(R)) is close to being uniformly random on Rm, this property
follows from the security of HSS.

Theorem 1.1.16 (PCG for Additive Correlations from HSS). Let R be a ring and
n,m, ` 2 N. Let F ✓ { f : Rn

! R
m
} be a family of functions. Let PRG be

1.1. DEFINITIONS AND DISCUSSION 19

a D`-PRG and HSS = (HSS.Gen,HSS.Share,HSS.Eval) an HSS with over-
head OHSS

6 for the family of functions FHSS := { f � PRG : R` ! R
m, r 7!

f (PRG(r)) | f 2 F } that further satisfies pseudorandomness of outputs. Then,
PCG = (PCG.Setup,PCG.Gen,PCG.Expand) as defined in Figure 1.1.2 is a
PCG for the correlation generator CF with key-length upper bounded by ` ·OHSS.

Proof. Correctness. Let f 2 F . We have

{(R0,R1) |(k0, k1) $
 PCG.Gen(1�),R� PCG.Expand(�, k�) for � 2 {0, 1}}

c
⇡ {(R0,R1) |(sk, {ek�}�2{0,1}) HSS.Gen(1�), r $

 D
`(R),

(k0, k1) HSS.Share(sk, r),R0 HSS.Eval(0, ek0, k0, f � PRG),
R1 := f (PRG(r)) � R0}

c
⇡ {(R0,R1) |r $

 D
`(R),R0 R

m,R1 := f (PRG(r)) � R0}

c
⇡ {(R0,R1) |X $

 U
n(R),R0 R

m,R1 := f (X) � R0}

as required, where the first transition follow by correctness of HSS, the second by
pseudorandomness of outputs of HSS and the last by pseudorandomness of PRG.

Security. Let � 2 {0, 1}. We have

{(k1��,R�) |(k0, k1) $
 PCG.Gen(1�),R� PCG.Expand(�, k�)}

c
⇡ {(k1��,R�) |(sk, {ek�}�2{0,1}) HSS.Gen(1�), r $

 D
`(R),

(k0, k1) HSS.Share(sk, r),
R1�� HSS.Eval(1 � �, ek1��, k1��, f � PRG),
R� := f (PRG(r)) � R1��}

c
⇡ {(k1��,R�) |(sk, {ek�}�2{0,1}) HSS.Gen(1�), r $

 D
`(R), r0 $

 D
`(R),

(k0, k1) HSS.Share(sk, r0),
R1�� HSS.Eval(1 � �, ek1��, k1��, f � PRG),
R� := f (PRG(r)) � R1��}

c
⇡ {(k1��,R�) |(sk, {ek�}�2{0,1}) HSS.Gen(1�), X $

 U
n(R), r0 $

 D
`(R),

(k0, k1) HSS.Share(sk, r0),
R1�� HSS.Eval(1 � �, ek1��, k1��, f � PRG),
R� := f (X) � R1��},

6We say a HSS has overhead OHSS, if for every input the share size does not exceed OHSS times
the input size.

20 CHAPTER 1. FSS AND HSS

where the first transition follows by correctness of HSS, the second transition by
security of HSS and the last by pseudorandomness of PRG.

⇤

1.1.7 Further Discussions

Computational security. Unlike secret sharing with basic linear homomorphism,
it can be shown that most nontrivial FSS and HSS cannot provide information theo-
retic hiding [57, 20, 25]. For example, even for simple classes F (such as the class
of point functions), the best possible solution with information theoretic security
is to additively share the truth-table representation of f , whose shares consist of 2n

group elements. But if one considers a computational notion of hiding, then there
are no apparent limitations to what can be done for polynomial-time computable
f . This is what we refer to when we speak of FSS/HSS.

Homomorphic Secret Sharing vs. Fully Homomorphic Encryption. HSS can
be viewed as a relaxed version of fully homomorphic encryption (FHE) [74, 54],
where instead of a single party homomorphically evaluating on encrypted data, we
allow homomorphic evaluation to be distributed among two parties who do not
interact with each other. As in the case of FHE, we require that the output of Eval

be compact in the sense that its length depends only on the output length |P(x)|
but not on the size of P. But in fact, a unique feature of HSS that distinguishes it
from traditional FHE is that the output representation can be additive. E.g., we can
achieve Eval(x0, P) + Eval(x1, P) = P(x) mod � for some positive integer � � 2
that can be chosen arbitrarily. This enables an ultimate level of compactness and
e�ciency of reconstruction that is impossible to achieve via standard FHE. For
instance, if P outputs a single bit and � = 2, then the output P(x) is reconstructed
by taking the exclusive-or of two bits.

Other related notions. We note that other forms of secret sharing of functions and
homomorphic secret sharing have been considered in the literature. An initial study
of secret sharing homomorphisms is due to Benaloh [9], who presented construc-
tions and applications of additively homomorphic secret sharing schemes. Further
exploration of computing on secret shared data took place in [6]. Secret sharing
of functions has appeared in the context of threshold cryptography (cf. [43, 42]).
However, these other notions either apply only to very specific function classes
that enjoy homomorphism properties compatible with the secret sharing, or alter-
natively they do not require a simple (e.g., additive) representation of the output
which is essential for the applications we consider.

1.2. CONSTRUCTIONS OF FSS AND HSS 21

1.1.8 Historical Notes

Function secret sharing was initially introduced for the special case of point func-
tions in [57]. The notion was extended to general functions in [20], and the one-
way function-based construction for point function was optimized and generalized
in [22]. The dual notion of homomorphic secret sharing was introduced in [21], and
improvements of the initial construction were subsequently described in [23, 19].
Theoretical foundations for homomorphic secret sharing were developed in [25].

Pseudorandom correlation generators in the 2-party setting were initially con-
sidered in [19] (under the name “cryptographic capsules”). Previously, in the multi-
party setting, PCGs for linear correlations were considered in [56, 41]. PCGs of
the latter kind are sometimes referred to as pseudorandom secret sharing (PRSS).
Constructions of PCGs for increasingly more complex correlations were described
in [14, 16, 18].

1.2 Constructions of FSS and HSS

We now cover a variety of selected constructions of FSS and HSS from the litera-
ture. Existing constructions can be naturally categorized according to their expres-
siveness and the strength of the underlying assumption. More precisely, we will
cover “low-end” constructions of FSS (capturing restricted classes such as point
functions, intervals, comparisons, and decision trees, assuming only the existence
of one-way functions), “mid-range” constructions of HSS (capturing all constant-
depth circuits, from a weak flavor of the learning parity with noise assumption
which is not known to imply public key cryptography), and “high-end” construc-
tions of HSS (for branching programs and general circuits, from public key as-
sumptions such as DDH, DCR, and LWE). We will only consider here schemes
with t = m � 1, namely security against all-but-one server, focusing mainly on
the case m = 2. See [25, 67, 65, 31, 53] for constructions of HSS schemes with
t < m � 1.

1.2.1 Cryptographic Assumptions

The constructions of this section build upon a variety of standard cryptographic
assumptions. We assume familiarity with basic cryptographic primitives such as
a one-way function (OWF) and a pseudorandom generator (PRG); see [58] for
formal definitions. For the sake of completeness, however, we recall two of the
main cryptographic assumptions used in this line of work: the Learning Parity with
Noise (LPN) assumption, and the Decisional Di�e-Hellman (DDH) assumption.

22 CHAPTER 1. FSS AND HSS

The LPN Assumption. The Learning Parity with Noise (LPN) assumption [10]
states that it is hard to solve a system of uniformly random linear equations over F2
where each bit is flipped with some small probability ". It can be shown that this
assumption is equivalent to the assumption that noisy linear equations are pseu-
dorandom. Many variants of LPN are standard in the literature, over other fields
than F2, with di↵erent noise distributions, or with a di↵erent distribution of the
equations.

An equivalent formulation of LPN is the following: it is hard to decode a noisy
codeword from a random linear code. Changing the distribution over equations is
equivalent to considering other types of linear codes. Below, we provide a general
definition of LPN over a ring R, with respect to a code generator C which samples
the system of equations, and a noise distributionD over R.

Definition 1.2.1 (LPN). LetD(R) = {Dk,q(R)}k,q2N denote a family of distributions
over a ringR, such that for any k, q 2 N, Im(Dk,q(R)) ✓ Rq. Let C be a probabilistic
code generation algorithm such that C(k, q,R) outputs a matrix A 2 Rk⇥q. For
dimension k = k(�), number of samples (or block length) q = q(�), and ring
R = R(�), the (D,C,R)-LPN(k, q) assumption states that

{(A,~b) | A $
 C(k, q,R),~e $

 Dk,q(R), ~s $
 R

k,~b ~s · A + ~e}
c
⇡ {(A,~b) | A $

 C(k, q,R),~b $
 R

q
},

where
c
⇡ denotes computational indistinguishability.

Beyond the standard Bernoulli noise distribution (where each coordinate is
noisy with some probability "), other standard noise distributions include exact
noise (a random fixed-size subset of coordinates are noisy), which can be shown to
be equivalent to Bernoulli noise, and regular noise (where the output is divided into
blocks, where a single random entry of each block is picked uniformly at random).

Example: LPN with Fixed Weight Noise. For a finite field F, we denote by
HWr,n(F) the distribution of uniform, weight r vectors over Fn; that is, a sample
fromHWr,n(F) is a uniformly random nonzero field element in r random positions
out of n, and zero elsewhere.

Dual LPN. It is often convenient to work with an equivalent dual form of the
LPN assumption, which we state below:

Definition 1.2.2 (Dual LPN). Let D(R) and C be as in Definition 1.2.1, n, n0 2 N
with n0 > n, and define C?(n0, n,R) = {B 2 Rn0⇥n : A · B = 0, A 2 C(n0 �
n, n0,R), rank(B) = n}.

1.2. CONSTRUCTIONS OF FSS AND HSS 23

For n = n(�), n0 = n0(�) and R = R(�), the (D,C,R)-dual-LPN(n0, n) assump-
tion states that

{(H,~b) | H $
 C?(n0, n,R),~e $

 D(R),~b ~e · H}
c
⇡ {(H,~b) | H $

 C?(n0, n,R),~b $
 R

n
}.

The DDH Assumption. Let DHGen be a deterministic algorithm that on input 1�

returns a description G = (G, p) where G is a cyclic group of prime order p. Then
the decisional Di�e-Hellman assumption is defined as follows.

Definition 1.2.3 (DDH Assumption). We say that the decisional Di�e-Hellman
(DDH) assumption holds relative to DHGen if for all probabilistic polynomial time
adversaries Adv,

Pr

2
66666666664

G DHGen(1�),
g

$
 G,↵, �, �

$
 Zp,

b
$
 {0, 1}, gb (g↵�)b

· (g�)1�b
: Adv(g, g↵, g�, gb) = b

3
77777777775

1
2
+ negl(�).

Here, note that DHGen outputs a fixed group G per security parameter.

The DCR Assumption. Let DCRen be a randomized algorithm that on input 1�

returns (N, p, q), where N = pq and p, q are random safe primes (a safe prime is a
prime of the form 2x + 1 where x is also prime) of length `(�).

Definition 1.2.4 (DCR Assumption). We say that the decisional composite residu-
osity (DCR) assumption holds relative to DCRen if for all probabilistic polynomial
time adversaries Adv,

Pr

2
66666666664

(N, p, q) DCRen(1�),
g0

$
 Z

⇤

N2 , g1 gN
0 mod N2,

b
$
 {0, 1}

: Adv(N, gb) = b

3
77777777775

1
2
+ negl(�).

1.2.2 An Overview of the State of the Art

FSS/HSS constructions as of the writing of this chapter (November 2021) are as
follows. The given complexity measures are with respect to n-bit inputs. Unless
otherwise specified, the results of this section are for m = 2 servers.

24 CHAPTER 1. FSS AND HSS

“Low End”: FSS from One-Way Functions

For simple but useful function classes, FSS can be constructed from the (minimal)
assumption that a OWF exists. The following constructions all make a black-box
use of an arbitrary PRG. We let � denote a concrete computational security param-
eter that serves as the PRG seed length. In an AES-based implementation, one can
take � = 128.

• Point functions (“Distributed Point Functions”).

The class of point functions consists of functions of the form f↵,�, such that
f↵,�(x) outputs � if x = ↵ and 0 otherwise. Here x,↵ 2 {0, 1}n and � 2 G for
an Abelian group G. We let |�| denote the bit-length of a representation of
a group element. When |�| is omitted it is understood to be 1. A distributed
point function (DPF) is an FSS scheme for the class of point functions.

– The first nontrivial (2-party) DPF was implicitly constructed in [35] in
the context of computationally private information retrieval. The key
size of this construction is 2O(

p
n)
· �, which is not polynomial in the

input size n but still a super-polynomial improvement over the naive
solution of additively sharing the size-2n truth table.

– The notion of DPF was first introduced in [57], which also gave a re-
cursive construction with key size O(nlog2 3

· �). This was improved to
O(n�) bits in [20] via a tree-based construction.

– The current best construction [22] has key size ⇡ n� + |�|. More pre-
cisely, the key size is � + n(� + 2) � blog �/|�|c bits.7

For m > 2 servers: the best known construction, presented in [20] has key
size O(2m2n/2

· �) bits. For a small number of servers m, this gives a near-
quadratic improvement over the naive solution of secret-sharing the truth-
table. The question of improving this bound, e.g., obtaining a 3-server DPF
with key size O(2n/3

· �) from one-way functions, is one of the central open
questions in the area.8

• Comparison and Intervals [20, 22, 13].

The class of comparison functions consists of functions fa which output 1
on inputs x with a < x. Interval functions f(a,b) output 1 precisely for inputs

7In particular: � + n(� + 2) for �-bit outputs, and � + n(� + 2) � blog �c for 1-bit outputs.
8Here we only consider the case where security should hold against t = m � 1 colluding servers.

Settling for a smaller security threshold, better DPF constructions can be obtained from information-
theoretic private information retrieval schemes [36] or from OWF-based DPF [31].

1.2. CONSTRUCTIONS OF FSS AND HSS 25

x that lie within the interval a < x < b, and 0 otherwise. Constructions of
FSS for such functions follow a similar structure as DPFs. The best key size
for comparison function is comparable to a DPF and for interval functions
it is roughly twice the size [22, 13]. Optimized FSS schemes for the related
classes of shifted-ReLU and spline (piecewise-polynomial) functions were
presented in [24, 13].

• NC0 predicates (i.e., functions with constant locality) [20].

For locality d, the key size grows as O(� · nd). For example, this includes
bit-matching predicates that check a constant number of bits d.

• Decision trees with topology leakage [22].

A decision tree is defined by: (1) a tree topology, (2) variable labels on each
node v (where the set of possible values of each variable is known), (3) value
labels on each edge (the possible values of the originating variable), and (4)
output labels on each leaf node.

In the construction of [22], the key size is roughly � · |V | bits, where V is
the set of nodes, and evaluation on a given input requires |V | executions of a
pseudorandom generator, and a comparable number of additions. The FSS
is guaranteed to hide the secret edge value labels and leaf output labels, but
(in order to achieve this e�ciency) reveals the base tree topology and the
identity of which variable is associated to each node.

Constant-dimensional intervals. A sample application of FSS for deci-
sion trees is constant d-dimensional interval queries: that is, the functions
f (x1, · · · , xd) which evaluate to a selected nonzero value precisely when
ai xi bi for some secret interval ranges (ai, bi)i2[d]. For n-bit inputs
xi, FSS for d-dimensional intervals can be obtained with key size and com-
putation time O(� · nd). For small values of d, such as d = 2 for supporting a
conjunction of intervals, this yields solutions with reasonably good concrete
e�ciency.

Other PRG-based constructions of FSS schemes for function classes that are
motivated by mixed-mode secure computation are presented in [24, 13]. In the
context of private information retrieval, FSS schemes for the above function classes
can be combined with server-side database operations to emulate private database
search with richer query classes, such as Max/Min and top-k [81]. See Section 1.3.2
for discussion of these and other applications of FSS from symmetric cryptography.

26 CHAPTER 1. FSS AND HSS

“Mid Range”: HSS from LPN-Style Assumptions

The LPN assumption and its variants can be viewed as lying in between symmetric
cryptography and public-key cryptography. While LPN with low noise is known to
imply public-key encryption [1], it is not known to imply additively homomorphic
encryption (or even collision-resistant hashing, except in an extreme parameter
regime [28]). Still, in the context of HSS and especially in the related context of
PCGs, LPN turns out to be surprisingly useful. Under LPN, the following HSS-
based constructions are known:

• Constant-degree polynomials, from standard LPN [16];

• Circuits of log log-depth, from the superpolynomial hardness of LPN [39].

In both of the above cases, the share size is sublinear in the description size
of the function being evaluated. This rules out, for instance, HSS for constant-
degree polynomials that uses additive sharing of all monomials. An HSS scheme
for degree-2 polynomials with compact (but not additive) output shares was previ-
ously constructed in [32] from threshold additively homomorphic encryption.

“High End”: HSS from Public-Key Cryptography

Using standard public-key cryptography assumptions, HSS schemes exist for much
richer function representation classes, including branching programs (capturing
functions in NC

1 and logspace) and even general circuits (capturing general poly-
nomial time computations). Concretely, the following results are known.

• Branching programs: Allowing for inverse-polynomial error (namely, �-
correctness for inverse polynomial �), a construction from Decisional Di�e-
Hellman (DDH) was presented in [21]. In this construction the running time
of Eval is Õ(s2/�), where s is the branching program size and � is the error
probability (which can be made detectable, namely of a Las-Vegas type).
This was subsequently improved to Õ(s1.5/�0.5) in [46]. Optimized variants
of the DDH-based constructions for simple but useful function classes are
given in [23, 19]. A similar construction from the Decisional Composite
Residuosity (DCR) assumption was presented in [52].

• Branching programs: With full (negligible-error) correctness, HSS con-
structions from the DCR assumption were presented in [69, 76]. In these
constructions, the running time scales linearly with s.

1.2. CONSTRUCTIONS OF FSS AND HSS 27

• Circuits: A general-purpose HSS scheme for Boolean circuits based on the
Learning With Errors (LWE) assumption was presented in [49]. More con-
cretely, in the language of Definition 1.1.4: Additive (n,m)-HSS for arbitrary
n,m and circuits of a fixed polynomial size can be obtained from the Learn-
ing With Errors (LWE) assumption, by a simple variation of the FSS con-
struction from spooky encryption of [49] (more specifically, their techniques
for obtaining 2-round MPC). Here the share size depends on the bound on
the circuit size. The HSS shares can be made independent of the circuit size
by using a standard circular-secure variant of the LWE assumption that is
used in constructions of fully homomorphic encryption. See [25] for details.
(Earlier constructions of HSS for circuits from [20] were either based on
indistinguishability obfuscation or only yielded noisy HSS from LWE.)

1.2.3 Distributed Point Function from OWF

We give an intuitive description of the (2-party) DPF (Gen
•,Eval

•) construction
from [22] (following the text therein). Recall that a DPF is an FSS scheme for
the class of point functions f↵,� : {0, 1}n ! G whose only nonzero evaluation is
f↵,�(↵) = �. For simplicity, consider the case of a DPF with a single-bit output
G = {0, 1} and � = 1.

Basic key structure. At a high level, each of the two DPF keys k0, k1 defines a
GGM-style binary tree [59] with 2n leaves, where the leaves are labeled by inputs
x 2 {0, 1}n. We will refer to a path from the root to a leaf labeled by x as the
evaluation path of x, and to the evaluation path of the special input ↵ as the special
evaluation path. Each node v in a tree will be labeled by a string of length � + 1,
consisting of a control bit t and a �-bit seed s, where the label of each node is fully
determined by the label of its parent. The function Eval

• will compute the labels
of all nodes on the evaluation path to the input x, using the root label as the key,
and output the control bit of the leaf.

Generating the keys. We would like to maintain the invariant that for each node
outside the special path, the two labels (on the two trees) are identical, and for each
node on the special path the two control bits are di↵erent and the two seeds are
indistinguishable from being random and independent. Note that since the label
of a node is determined by that of its parent, if this invariant is met for a node
outside the special path then it is automatically maintained by its children. Also,
we can easily meet the invariant for the root (which is always on the special path)
by just explicitly including the labels in the keys. The challenge is to ensure that
the invariant is maintained also when leaving the special path.

Towards describing the construction, it is convenient to view the two labels of a

28 CHAPTER 1. FSS AND HSS

node as a mod-2 additive secret sharing of its label, consisting of shares [t] = (t0, t1)
of the control bit t and shares [s] = (s0, s1) of the �-bit seed s. That is, t = t0 � t1
and s = s0 � s1. The construction employs two simple ideas.

1. In the 2-party case, additive secret sharing satisfies the following weak ho-
momorphism: If G is a PRG, then G([s]) = (G(s0),G(s1)) extends shares of
the 0-string s = 0 into shares of a longer 0-string S = 0, and shares of a
random seed s into shares of a longer (pseudo-)random string S , where S is
pseudo-random even given one share of s.

2. Additive secret sharing is additively homomorphic: given shares [s], [t] of
a string s and a bit t, and a public correction word CW, one can locally
compute shares of [s� (t ·CW)]. We view this as a conditional correction of
the secret s by CW conditioned on t = 1.

To maintain the above invariant along the evaluation path, we use the two types
of homomorphism as follows. Suppose that the labels of the i-th node vi on the
evaluation path are [s], [t]. To compute the labels of the (i + 1)-th node, the parties
start by locally computing [S] = G([s]) for a PRG G : {0, 1}� ! {0, 1}2�+2, parsing
[S] as [sL, tL, sR, tR]. The first two values correspond to labels of the left child and
the last two values correspond to labels of the right child.

To maintain the invariant, the keys will include a correction word CW for each
level i. As discussed above, we only need to consider the case where vi is on the
special path. By the invariant we have t = 1, in which case the correction will be
applied. Suppose without loss of generality that ↵i = 1. This means that the left
child of vi is o↵ the special path whereas the right child is on the special path. To
ensure that the invariant is maintained, we can include in both keys the correction
CW (i) = (sL, tL, sR

� s0, tR
� 1) for a random seed s0. Indeed, this ensures that after

the correction is applied, the labels of the left and right child are [0], [0] and [s0], [1]
as required. But since we do not need to control the value of s0, except for making
it pseudo-random, we can instead use the correction CW (i) = (sL, tL, sL, tR

� 1)
that can be described using � + 2 bits. This corresponds to s0 = sL

� sR. The n
correction values CW(i) are computed by Gen

• from the root labels by applying the
above iterative computation along the special path, and are included in both keys.

Finally, assuming that � = 1, the output of Eval
• is just the shares [t] of the leaf

corresponding to x. A di↵erent value of � (from an arbitrary Abelian group) can
be handled via an additional correction CW(n+1).

The above construction can be generalized to arbitrary groups G and value
�; additional optimizations are described in [22]. The resulting construction is
summarized in the following theorem.

1.2. CONSTRUCTIONS OF FSS AND HSS 29

Theorem 1.2.5 (PRG-based DPF [22], Theorems 3.3 and 3.4). Given a PRG G :
{0, 1}� ! {0, 1}2�+2, there exists a DPF for point functions f↵,� : {0, 1}n ! G with
key size n ·(�+2)+�+dlog2 |G|e bits. For m = d log |G|

�+2 e, the key generation algorithm
Gen invokes G at most 2(n + m) times, the evaluation algorithm Eval invokes G at
most n + m times, and the full evaluation algorithm FullEval invokes G at most
2n(1 + m) times.

In the above, FullEval refers to an algorithm evaluating Eval on all points of the
domain. While FullEval can always be obtained by running Eval on all points in
parallel, the PRG-based DPF allows for optimizations taking advantage of the tree
structure of the construction. The FullEval algorithm is particularly useful when
constructing pseudorandom correlation generators using DPFs.

From DPF to FSS for Multi-Point Functions. A multi-point function generalizes
a point function in the natural way: fS ,~� : {0, 1}n 7! G maps to 0 everywhere,
except on t points S = (s1, · · · , st) (which we will typically view as an ordered
multi-set) where it evaluates respectively to ~� = (�1, · · · , �t). Due to the additive
structure of G, any t-multipoint function can be written as the sum of t point func-
tions. This immediately implies that an FSS for t-multipoint FSS (t-MPFSS) can
be constructed from t instances of a DPF.

Theorem 1.2.6 (PRG-based MPFSS [14]). Given a PRG G : {0, 1}� ! {0, 1}2�+2,
there exists an MPFSS for t-multipoint functions fS ,~� : {0, 1}n ! G with key size
t · (n · (� + 2) + � + dlog2 |G|e) bits.

Multi-Party DPF. A multi-party DPF is a DPF scheme for m > 2 parties with
full threshold, i.e. the adversary controls m � 1 parties. The key size of the best
multi-party DPF scheme we know [20] is roughly a square root of the size of the
trivial DPF scheme, as opposed to the exponential reduction of the key size in the
two-party case. The main di↵erence between the two schemes is that the multi-
party scheme does not have a recursive structure. We first describe the scheme for
binary outputs and then generalize to output domains Zq for any integer q.

A DPF in this setting cannot use the implicit encoding of values in the two-
party setting in which a 0 value is represented by two identical seeds for a PRG
and a 1 value is represented by two pseudorandom seeds for the PRG. In multi-
party DPF this representation does not hide the values 0 or 1 since they can be
easily distinguished by an adversary that controls at least two parties.

As an alternative encoding consider an m-party additive secret sharing of a 2
Z2. Every sharing consists of m shares sh1, . . . , shm 2 Z2 such that

Pm
i=1 shi ⌘

a mod 2. The proposed encoding of a consists of all 2m�1 vectors of additive shares
of a in randomly permuted order. Party i receives the i-th share in each vector.

30 CHAPTER 1. FSS AND HSS

Clearly, the view of any proper subset of parties is the same regardless of the secret
a.

The key generation algorithm for multi-party DPF can utilize this encoding by
assigning a random seed s j to the j-th vector of shares (sh j,1, . . . , sh j,m) 2 Zm

q . The
i-th party receives (j, s j) if and only if sh j,i = 1. Now, given a public correction
word CW, the parties can locally expand the seeds add them together and condi-
tionally correct the shared secret only for encoded 1 values.

Unlike the two-party case, the local evaluation procedure cannot first expand
a PRG seed and then use CW to modify an encoding of 1 into an encoding of a
longer vector with Hamming weight 1. In the multi-party case this would leak in-
formation on the location of the point ↵ via shared values across parties. However,
this procedure can turn an encoding of 1 into an additive sharing of a vector with
Hamming weight 1.

Putting the pieces together, a key in a multi-party DPF divides the input domain
{0, 1}n into n0 segments, where n0 is chosen to minimize the key size, and assigns
a block of seeds to each segment. The segment that includes ↵ is assigned a block
that encodes 1 and the blocks in all other segments encode 0. Each party expands
its seeds for each segment to 2n/n0 bits and XORs all the expanded seeds associated
with a segment. The parties now have an additive sharing of a vector of zeroes for
each segment that does not include ↵ and an additive sharing of a pseudorandom
vector for the segment that includes ↵.

To convert this sharing into an additive sharing of the truth table of f↵,� the
Gen algorithm includes a correction word of length 2n/n0 that each party adds to
its share of a segment if it received (1, s1) for that segment. Since s1 is distributed
to an odd number of parties in the segment that contains ↵ and to an even number
of parties in any other segment, the correction word a↵ects only the “interesting”
segment and can be chosen so that the sum of all shares is exactly the truth table of
f↵,�. In detail, if v is a binary vector of length 2n/n0 that represents the restriction
of the truth table of f↵,� to the interesting segment and s1, . . . , s2m�1 are all the seeds
associated with the interesting segment then CW = v +

P2m�1

j=1 G(s j) with addition
in F2n/n0

2 .
We generalize this scheme to any input domain Zq in two steps, first for a

prime power q and then for general integers. For a prime power q, the encoding
of a 2 {0, 1} ✓ Zq is a random permutation of all m-vectors (sh j,1, . . . , sh j,m) 2 Zm

q
such that

Pm
i=1 sh j,i ⌘ a mod q. Gen chooses an encoding for each of n0 segments

of the input domain and assigns a seed s j to each m-vector of shares. The i-th party
receives a tuple (j, s j, sh j,i) if and only if sh j,i , 0. In the Eval procedure, the i-th
party computes

P
j sh j,i ·G(s j) 2 Z2n/n0

q for every segment. The key also includes a
public correction word CW 2 Z2n/n0

q chosen so that after each party adds sh1 · CW

1.2. CONSTRUCTIONS OF FSS AND HSS 31

to its share, the parties share the truth table of the point function.
In the general case of output domain Zq where q has prime factorization q =

pe1
1 · · · p

e`
` , for primes p1, . . . , p` and integers e1, . . . , e`, the above construction is

repeated independently for all prime powers qk = pek
k . The additive output shares

over Zq1 ⇥ . . .⇥Zq` are locally combined to output shares over Zq using the Chinese
Remainder Theorem.

The above construction is captured by the following theorem, which general-
izes a similar construction from [20] to any output domain Zq.

Theorem 1.2.7 (PRG-based multi-party DPF, generalizing [20], Section 3.1). Let �
be a security parameter, let m, n and q be integers such that m > 2 and q = q1 · · · q`
is the factorization of q into mutually prime factors, with q1 = max{q1, . . . , q`}.
Given a PRG with a �-bit seed, there exists an m-party DPF for point functions
f↵,� : {0, 1}n ! Zq with key size O(2n/2

· `(�qm�1
1 log q1)1/2).

A consequence of Theorem 1.2.7 is that the multi-party DPF scheme is e�cient
only for output domains Zq with smooth q due to the exponential dependence of
the key size on the largest prime power that factors q.

We next provide a more precise bound on the key size for a prime power q and
output domain Zq. Gen samples qm�1 PRG seeds s j for each of n0 segments. Each
party’s key includes for qm�2 of these seeds a tuple (j, s j, sh j,i). Since j qm�1 and
shi, j 2 Zq the total size of a tuple is �+m log q. Note that �+m log q (q+1)� since
qm�1 is a feasible size (Gen samples qm�1 seeds), while 2� is infeasible. In addition,
each key includes the public correction word, which is of size 2n log q

n0 . Therefore, the

key size is at most n0qm�2(q+1)�+2n log q/n0. Setting n0 =
⇣
(2n log q)/(qm�1�)

⌘1/2

we get that the key size is (2n+2�qm�1 log q)1/2
· (1 + o(1)). For general integers q

the key size is thus bound by plugging each relatively prime factor qi of q in the
above expression and summing over all these terms.

The dominant factor in the running time of Gen,Eval and FullEval is the num-
ber of times that the PRG is called. Assuming a PRG G : {0, 1}� ! {0, 1}C(n,q,�), for
C(n, q, �) = d(2n�qm�1

1 log q1)1/2
e, the algorithm Gen invokes G at most

P`
i=1 qm�1

i
times, the evaluation algorithm Eval invokes G at most

P`
i=1 qm�2

i times, and the
full evaluation algorithm FullEval invokes G at most n0

P`
i=1 qm�2

i times.

1.2.4 HSS for Constant-Degree Polynomials from LPN

We now turn our attention to HSS for a more general class: the class of constant-
degree polynomials. It is straightforward to build an information-theoretic scheme
for degree-d n-variate polynomials, simply by additively sharing all monomials of
degree d, which leads to a construction with share size O(nd). The construction we

32 CHAPTER 1. FSS AND HSS

describe in this section, on the other hand, has much smaller shares, of size O(�d)
(independent of n), where � is a security parameter. It turns out that the low-end
construction of (multi-point) FSS is one of the key building block in this more
advanced construction, the other being the LPN assumption. At a high level, the
construction proceeds as follows: it builds upon MPFSS to construct a pseudoran-
dom correlation generator for a constant-degree correlation over sparse vectors.
Then, it builds upon the linearity of the dual-LPN assumption to convert this into
a constant-degree correlation over general pseudorandom generator, thus giving a
full-fledged PCG for constant-degree correlation. Eventually, we show that a PCG
for constant-degree correlations implies an HSS for constant-degree polynomials,
providing a partial converse to the reverse implication which we described in Sec-
tion 1.1.6.

We first describe the construction for the case of bilinear correlations. More
precisely, we consider the following type of additive correlations: the party P�
receives pseudorandom vectors (~x�,~z�) such that B(~x0, ~x1) = ~z0 + ~z1, where B is
a bilinear function. We note that this type of correlation generalizes naturally to
the setting where the entries ~x0 and ~x1 are additively shared between the parties
(instead of being respectively known to one party).

Theorem 1.2.8. Suppose the (HWt,n0 ,C,Fp)-dual-LPN(n0, n) assumption holds,
and that MPFSS is a secure multi-point FSS scheme. Then the construction Gbil

(Fig. 1.2.1) is a secure PCG for general bilinear correlations.

Correctness follows by inspection, using the correctness of the MPFSS, and
the bilinearity of the tensor product. We provide a sketch of the security analysis,
focussing on the viewpoint of the player 0 (the other direction is symmetrical): the
informations (S 0,~y0) and (S 1,~y1) uniquely specifies two error vectors ~µ0 and ~µ1.
The party P0 knows (S 0,~y0). By the security of the MPFSS, there is a simulator
which can construct Kfss

0 given only the allowed leakage on the point function, in
a way that is indistinguishable from the true Kfss

0 . In particular, this means that we
can switch to a hybrid scenario where Kfss

0 is generated truly independently of~~µ1.
Once ~µ1 is not used anymore, the value ~x1 = ~µ1 · Hn0,n can be replaced by a truly
random vector: this change is indistinguishable under the (dual) LPN assumption
with respect to the code generation algorithm C. This concludes the sketch of the
proof.

E�ciency. Instantiating the MPFSS as in [14], the setup algorithm of Gbil outputs
seeds of size t2

· (dlog n0e(� + 2) + � + log2 |F|) bits, which amounts to Õ(t2) field
elements over a large field (log2 |F| = O(�)). Expanding the seed involves (tn0)2

PRG evaluations and O(n · n0)2 = O(n4) arithmetic operations.

1.2. CONSTRUCTIONS OF FSS AND HSS 33

Construction Gbil

Parameters: 1�, n, n0, t, p 2 N, where n0 > n. A code generation algorithm C
and Hn0,n

$
 C(n0, n,Fp). A bilinear function B~c : (~↵, ~�) ! ~c · (~↵ ⌦ ~�)|, where

⌦ denotes the tensor product.

Gen: On input 1�:

1. Pick two random size-t subsets (S 0, S 1) of [n0], sorted in increasing or-
der.

2. Pick two random vector (~y0,~y1) 2 (Ft
p)2.

3. Compute (Kfss

0 ,K
fss

1) $
 MPFSS.Gen(1�, fS 0⇥S 1,~y0⌦~y1).

4. Let k0 (n,Kfss

0 , S 0,~y0) and k1 (n,Kfss

1 , S 1,~y1).

5. Output (k0, k1).

Expand: On input (�, k�), parse k� as (n,Kfss
� , S �,~y�). Define ~µ�

to be spreadn0(S �,~y�) in Fn0
p and ~x� ~µ� · Hn0,n. Compute ~v� as

MPFSS.FullEval(�,Kfss
�) in F(n0)2

p and set ~z� to be �~c · (~v� · (Hn0,n ⌦ Hn0,n))|.
Output (~x�,~z�).

Figure 1.2.1: PCG for Bilinear Correlations

Generalization. The scheme Gbil immediately generalizes to a PCG for arbitrary
constant-degree polynomials,9 where the size of the shares grows as Õ(td) and the
computational complexity is Õ((tn0)d + (nn0)d). It allows two parties to locally
compute, given the shares, additive shares of (~r, P(~r)), where ~r is pseudorandom
(under LPN) and P is a degree-d multivariate polynomial over F.

To see this, notice that we can replace ~y0 ⌦ ~y1 in Gen with ⌦d~y = ~y ⌦ · · · ⌦ ~y,
where ⌦d~y denotes the tensor product of ~y with itself d times (that is, the list of
all degree-d monomials of ~y). The parties can then compute shares of all degree-d
terms in P(~r) for a random ~r; to obtain shares of ~r and the lower-degree terms, we
extend the MPFSS values to include (~y,~y ⌦ ~y, · · · ,⌦d�1~y) as well as ⌦d~y.

Corollary 1.2.9. Suppose the (HWt,n0 ,C,Fp)-dual-LPN(n0, n) assumption holds,

9In fact, assuming that dual-LPN has 2O(t) security (which is in line with the best known attacks),
t can be taken as small as !(log �), in which case the degree d(�) of the polynomial can be larger, up
to O(log �/ log log �). The shares are still of polynomial size Õ(td), although the computational cost
O((n · n0)d) is slightly superpolynomial.

34 CHAPTER 1. FSS AND HSS

and that MPFSS is a secure multi-point FSS scheme. Then there exists a secure
PCG for general constant-degree correlations, with share size Õ(td) and computa-
tional complexity O((n · n0)d).

In particular, using n0 = O(n), we get:

Corollary 1.2.10. Assuming the standard LPN assumption over Fp with noise rate
r = o(n1/d�1) and linear number of samples, there exists a PCG for general degree-
d polynomials, with sublinear share size (in the output size n) and polynomial
computation.

From PCG to HSS for degree-d polynomials. Given a PCG for general, additive
degree-d correlations for a constant d, we show how to construct a homomorphic
secret sharing scheme for degree-d multivariate polynomials, a primitive which is
interesting in its own right. Consider two parties who wish to compute shares of
P(~x) for some public multivariate polynomial P, given shares of ~x. Let ⌦d~x denote
the degree-d tensor product ~x ⌦ · · · ⌦ ~x. Given a PCG for the additive, degree-
d correlation (~r,⌦2~r, · · · ,⌦d~r), we construct a (secret-key) homomorphic secret
sharing scheme HSS = (HSS.Gen,HSS.Share,HSS.Eval) for P as follows.

• HSS.Share(~x): generate PCG keys (k0, k1) which expand to shares of (~r,
⌦2~r, · · · ,⌦d~r), set ~x0 ~x+~r, and give to each party P� a share s� = (k�, ~x0).

• HSS.Eval(�, sb, P): On input party index � 2 {0, 1}, share s� of a size-n
input, and a degree-d multivariate polynomial P, compute a share P0� of the
polynomial P0 satisfying P0(X) = P(X � ~r). Note that the coe�cients of
P0 are public degree d polynomials in ~r, hence shares of the coe�cients
can be locally computed given shares of the monomials ~r, · · · ,⌦d~r. Output
P0�(~x0).

Correctness follows immediately by inspection, and security reduces to the
security of the underlying PCG. Therefore, we get:

Corollary 1.2.11. Suppose that the (HWt,n0 ,C,Fp)-dual-LPN(n0, n) assumption
holds, and that MPFSS is a secure multi-point FSS scheme. Then there exists a
secure HSS for general degree-d multivariate polynomials over F, with shares of
size n + Õ(td) and computational complexity O((n · n0)d).

1.2.5 HSS for Branching Programs from DDH

We next give a simplified overview of the HSS construction from [21], following
exposition from [19]. Cast into the framework of Definition 1.1.4, this yields an

1.2. CONSTRUCTIONS OF FSS AND HSS 35

additive public-key (⇤, 2)-�-HSS for the class of branching programs under the
DDH assumption.

For simplicity of notation (and for greater e�ciency), we assume circular se-
curity of ElGamal encryption. This assumption can be replaced by standard DDH
by replacing ElGamal encryption with the circular secure public-key encryption
scheme of Boneh, Halevi, Hamburg, and Ostrovsky [12], as shown in [21].

RMS Programs. The construction of [21] supports homomorphic evaluation of
straight-line programs of the following form over inputs wi 2 Z, provided that all
intermediate computation values in Z remain “small,” bounded by a parameter M
(where the required runtime grows with this size bound).

Definition 1.2.12 (RMS programs). The Restricted Multiplication Straight-line
(RMS) programs consist of a magnitude bound 1M and an arbitrary sequence of
the four following instructions, each with a unique identifier id:

• Load an input into memory: (id, ŷ j ŵi).

• Add values in memory: (id, ŷk ŷi + ŷ j).

• Multiply value in memory by an input value: (id, ŷk ŵi · ŷ j).

• Output value from memory, as element of Z�: (id, �, Ô j ŷi).

If at any step of execution the size of a memory value exceeds the bound M, the
output of the program on the corresponding input is defined to be ?. We define the
size of an RMS program P as the number of its instructions.

In particular, RMS programs allow only multiplication of a memory value with
an input (not another memory value). RMS programs with M = 2 are powerful
enough to e�ciently simulate boolean formulas, logarithmic-depth boolean cir-
cuits, and deterministic branching programs (capturing logarithmic-space compu-
tations). For concrete e�ciency purposes, their ability to perform arithmetic com-
putations on larger inputs can also be useful.

Encoding Zq Elements. Let H be a prime-order group, with a subgroup G of
prime order q (the DDH group). Let g denote a generator of G. For any x 2 Zq,
consider the following 3 types of two-party encodings:

Level 1: “Encryption.” For x 2 Zq, we let [x] denote gx, and ~x�c denote the pair
([r] , [r · c + x]) for a uniformly random r 2 Zq, which corresponds to an ElGamal
encryption of x with a secret key c 2 Zq. (With short-exponent ElGamal, c is a
160-bit integer.) We assume that c is represented in base B (B = 2 by default)

36 CHAPTER 1. FSS AND HSS

as a sequence of s digits (ci)1is We let [[[x]]]c denote (~x�c , (~x · ci�c)1is). All
level-1 encodings are known to both parties.

Level 2: “Additive shares.” Let hxi denote a pair of shares x0, x1 2 Zq such that
x0 = x1 + x, where each share is held by a di↵erent party. We let �x�c denote
(hxi , hx · ci) 2 (Z2

q)2, namely each party holds one share of hxi and one share
of hx · ci. Note that both types of encodings are additively homomorphic over
Zq, namely given encodings of x and x0 the parties can locally compute a valid
encoding of x + x0.

Level 3: “Multiplicative shares.” Let {x} denote a pair of shares x0, x1 2 G such
that the di↵erence between their discrete logarithms is x. That is, x0 = x1 · gx.

Operations on Encodings. We manipulate the above encodings via the follow-
ing two types of operations, performed locally by the two parties:

1. Pair(~x�c , �y�c) 7! {xy}. This pairing operation exploits the fact that [a] and
hbi can be locally converted to {ab} via exponentiation.

2. Convert({z} , �) 7! hzi, with failure bound �. The implementation of Convert

is also given an upper bound M on the “payload” z (M = 1 by default), and
its expected running time grows linearly with M/�. We omit M from the
following notation.

The Convert algorithm works as follows. Each party, on input h 2 G, outputs
the minimal integer i � 0 such that h · gi is “distinguished,” where roughly a �-
fraction of the group elements are distinguished. Distinguished elements were
picked in [21] by applying a pseudo-random function to the descriptii)on of the
group element. An optimized conversion procedure from [23] (using a special
choice of “conversion-friendly” choices of G ⇢ Z⇤p and g = 2) applies the heuristic
of defining a group element to be distinguished if its bit-representation starts with
d ⇡ log2(M/�) leading 0’s; this was further optimized by considering instead the
(d + 1)-bit string 1||0d in [19]. Note that this heuristic only a↵ects the running time
and not security, and thus it can be validated empirically. Correctness of Convert

holds if no group element between the two shares {z} 2 G2 is distinguished.
We note that a significantly improved (an optimal) conversion procedure was

proposed in [46], using a more involved “Kangaroo walk” method to agree on a
distinguished point. The expected running time of of this improved conversion is
reduced from M/� to

p
M/�, a quadratic runtime improvement. Finally, Convert

can signal that there is a potential failure if there is a distinguished point in the
“danger zone.” Namely, Party b = 0 (resp., b = 1) raises a potential error flag ? if
h · g�i (resp., h · gi�1) is distinguished for some i = 1, . . . ,M.

1.2. CONSTRUCTIONS OF FSS AND HSS 37

Note that we used the notation M both for the payload upper bound in Convert

and for the bound on the memory values in the definition of RMS programs (Defi-
nition 1.2.12). In the default case of RMS program evaluation using base 2 for the
secret key c in level 1 encodings, both values are indeed the same. (However, when
using larger basis, they can di↵er in parts of the computation, and a more careful
analysis can improve error bound guarantees.)

Let PairConv be an algorithm that sequentially executes the two operations
Pair and Convert above: PairConv(~x�c , �y�c , �) 7! hxyi, with error �. We denote
by Mult the following algorithm:

• Functionality: Mult([[[x]]]c, �y�c , �) 7! �xy�c

– Parse [[[x]]]c as (~x�c , (~x · ci�c)1is).

– Let hxyi PairConv(~x� , �y�c , �
0) for �0 = �/(s + 1).

– For i = 1 to s, let hxy · cii PairConv(~xci�c , �y�c , �
0).

– Let hxy · ci =
Ps

i=1 Bi�1
hxy · cii.

– Return (hxyi , hxy · ci).

HSS for RMS programs. Given the above operations, an additive �-HSS for
RMS programs is obtained as follows. This can be cast as HSS in Definition 1.1.4
with a key generation setup.

• Key generation: Gen(1�) picks a group G of order q with � bits of security,
generator g, and secret ElGamal key c 2 Zq. It output a public key pk =

(G, g, h, ~ci�c)1is, where h = gc, and (ek0, ek1) hci, a random additive
sharing of c.

• Share: Share(pk, x) uses the homomorphism of ElGamal to compute and
output [[[x]]]c.

• RMS program evaluation: For an RMS program P of multiplicative size S ,
the algorithm Eval(b, ekb, (ct1, . . . , ctn), P, �, �) processes the instructions of
P, sorted according to id, as follows. We describe the algorithm for both
parties b jointly, maintaining the invariant that whenever a memory variable
ŷ is assigned a value y, the parties hold level-2 shares Y = �y�c.

– ŷ j x̂i: Let Y j Mult([[[xi]]]c, �1�c , �/S), where �1�c is locally
computed from (ek0, ek1) using h1i = (1, 0).

– ŷk ŷi + ŷ j: Let Yk Yi + Y j.

– ŷk x̂i · ŷ j: Let Yk Mult([[[xi]]]c,Y j, �/S).

38 CHAPTER 1. FSS AND HSS

– (�, Ô j ŷi): Parse Yi as (hyii , hyi · ci) and output O j = hyii + (r, r)
mod � for a fresh (pseudo-)random r 2 Zq.

The confidence flag is ? if any of the invocations of Convert raises a poten-
tial error flag, otherwise it is >.

The pseudorandomness required for generating the outputs and for Convert is ob-
tained by using a common pseudorandom function key that is (implicitly) given
as part of each ekb, and using a unique nonce as an input to ensure that di↵erent
invocations of Eval are indistinguishable from being independent.

A single-input (“secret-key”) HSS variant is simpler in two ways. First, Share

can directly run Gen and generate [[[x]]]c from the secret key c. Second, an input
loading instruction ŷ j x̂i can be processed directly, without invoking Mult, by
letting Share compute Y j �xi�c and distribute Y j as shares to the two parties.

Performance. The cost of each RMS multiplication or input loading is domi-
nated by s+ 1 invocations of PairConv, where each invocation consists of Pair and
Convert. The cost of Pair is dominated by one group exponentiation (with roughly
200-bit exponent in [19]). The basis of the exponent depends only on the key and
the input, which allows for optimized fixed-basis exponentiations when the same
input is involved in many RMS multiplications. When the RMS multiplications ap-
ply to 0/1 values (this is the case when evaluating branching programs), the cost of
Convert is linear in BS/�, where the B factor comes from the fact that the payload
z of Convert is bounded by the size of the basis. When � is su�ciently small, the
overall cost is dominated by the O(BS 2s/�) “conversion” steps, where each step
consists of multiplying by g and testing whether the result is a distinguished group
element.

1.2.6 Full-Fledged HSS for Branching Program from DCR

The construction of Section 1.2.5 su↵ers from two main drawbacks: (1) it is limited
to computation on small (polynomially bounded) inputs over Z, and (2) correctness
holds only with probability 1 � �, for some inverse polynomial error bound �. It
turns out that these two limitations can be lifted using a variant of the construction
over RSA groups – i.e., subgroups of Zn, where n is a product of two safe primes.
We sketch the main ideas underlying this alternative construction below, whose
security reduces to the Decisional Composite Residuosity assumption.

Replacing ElGamal by Paillier. The celebrated Paillier encryption scheme [72]
is an additively homomorphic cryptosystem over Zn. Unlike ElGamal, it is not

1.2. CONSTRUCTIONS OF FSS AND HSS 39

limited to encrypting small plaintexts. We briefly recall its description: an encryp-
tion of a message m 2 Zn is of the form c = (1 + n)m

· Rn mod n2, where R is
a random element of Zn. It is easy to check that the scheme is additively homo-
morphic over Zn. The decryption key is an integer d 2 Z such that d = 1 mod n
and d = 0 mod �(n), where � is Euler’s totient function. The decryption proce-
dure first computes cd mod n2, which is equal to (1 + n)m mod n2. Then, since
(1 + n)m = 1 + n · m mod n2, m can be recovered by substracting one and dividing
by n over Z.

The “level 1” type encodings are again of the form (~x�d , (~x · di�d)1is).
However, ~·� now denotes Paillier encryption. Furthermore, x can now be expo-
nentially large, e.g. 0 w n1/4. Similarly, the di are “chunks” of the secret key
d, of length (say) roughly n/4 bits each. Since |d| ⇡ 2n, this allows to set s to be a
small integer (here, 8) instead of a security parameter in the previous construction.
Level 2 encodings are of the form (hxi , hx · di), i.e., additive shares of x and x · d
over the integers.

Errorless discrete logarithm. As before, the parties with level 1 shares of x and
level 2 shares of an input y will compute partial decryptions, and recover multi-
plicative (i.e., level 3) shares of (1 + n)xy mod n2 (as well as of (1 + n)di·xy mod n2

for i = 1 to 8). However, the distributed discrete logarithm procedure, which
converts level 3 shares back to level 2 shares, is fundamentally di↵erent and errs
only with negligible probability. Let (h, h0) denote the two multiplicative shares of
(1 + n)xy mod n2. Each party write its share in base-n: h = h0 + n · h1 mod n2, and
h0 = h00 + n · h01 mod n2.

We have (1 + n)xy = h0h00 + n · (h0h01 + h00h1) mod n2. The key observation is
that h0 · h00 = (h mod n) · (h0 mod n) = hh0 = 1 mod n. Therefore, since h0 < n
and h00 < n, h00 is equal to [h�1

0 mod n] (over the integers), and h0 is equal to
[(h00)�1 mod n]. Since furthermore (1 + n)xy = 1 + nxy mod n2, it holds that

xy = h0h01 + h00h1 + ÷n(h0h00) mod n

= [h�1
0 mod n] · h1 + ÷n(h0 · [h�1

0 mod n]) + [(h00)�1 mod n] · h01 mod n
= z + z0 mod n,

where ÷n denotes the euclidean division by n and where we let z [h�1
0 mod n]·h1

and z0 ÷n(h0 · [h�1
0 mod n]) + [(h00)�1 mod n] · h01. Observe that z and z0 can be

locally computed, each by one of the parties. At this stage, we are almost done:
each party locally computes its additive share (z or z0) of xy mod n. With the same
procedure, the parties also obtain additive shares of di · xy mod n. It remains to
convert these shares over Zn into shares over Z. Here, the core observation stems
from the work of [26] (in the context of building HSS from the LWE assumption):

40 CHAPTER 1. FSS AND HSS

since xy and the xy · di are exponentially smaller than the modulus n, it su�ces to
do nothing. Indeed, given shares (z, z0) over Zn of xy, it holds that (z, z0 � n) form
shares of xy over Z, except when z < xy (in which case z0 = z � xy and (z, z0 � n)
are shares of xy � n instead). Since xy < n1/2 and that z is uniformly distributed
over Zn, the probability that this happens is at most 1/

p
n, which is negligible. The

same observation shows that the shares of xy · di can be converted into shares over
Z with error at most 1/n1/4. From the shares of xy · di, the parties can reconstruct
hxyi , hxy · di.

Evaluating RMS programs. The construction of HSS for RMS programs pro-
ceeds identically to the construction based on DDH. Because level 1 encodings
contain encryptions of functions of the secret key d, the security relies on the as-
sumption that the Paillier cryptosystem remains secure when encrypting its se-
cret key, leading to a circular-security variant of the DCR assumption. As for the
ElGamal-based construction, one can base the security solely on the plain DCR
assumption by replacing Paillier by a circularly-secure variant [27]. With this re-
placement, one gets an errorless DCR-based HSS scheme for evaluating arbitrary
RMS programs on shared inputs, where the RMS program can directly handle ex-
ponentially large elements of Z (up to some fixed bound, here n1/4).

Historical notes. The construction sketched above was presented in [69]. The
original presentation is more abstract, we provide here a more direct and algo-
rithmic description for simplicity. In addition to following the blueprint of the
DDH-based construction from [21] (see Section 1.2.5), the construction of [69]
also borrows ideas from a previous construction of HSS from LWE from [26]. A
very similar construction, also realizing HSS for branching programs from DCR,
was proposed in a concurrent and independent work [76].

1.3 Applications and Implications

In this section, we turn to implications of FSS and HSS constructions. We begin by
describing what is known about the relation of FSS/HSS to other primitives, and
then address applications of “low-end”, “mid-range”, and “high-end” construction
regimes.

1.3.1 Relation to Other Primitives

Below are the primary known theoretical implications of FSS/HSS primitives.

1.3. APPLICATIONS AND IMPLICATIONS 41

One-way functions. FSS for any “su�ciently rich” function class F (e.g., point
functions) necessitates the existence of OWF [57]. Further, in such an FSS, each
output share fi viewed as a function on its own must define a pseudorandom func-
tion [20]. Note that this is not a-priori clear from the security definition, which
only requires that the shares hide f .

(Amortized) Low-communication secure computation. It was shown in [20]
that FSS for a function class F strictly containing the decryption circuit for a
secure symmetric-key encryption scheme implies amortized low-communication
protocols for secure two-party computation of a related function class, relying on
a reusable source of correlated randomness (that can be realized via one-time of-
fline preprocessing). Given HSS for F , the same result holds without needing to
amortize over the preprocessing.10

At the time of this result, all known approaches for obtaining such protocols
relied on fully homomorphic encryption or related primitives, and as such this was
viewed as a “barrier” against achieving such FSS without FHE. In an interesting
twist, this was reversed by the work of [21], which succeeded in constructing a
form of HSS for NC

1 (and thus succinct secure computation) from DDH. However,
the “barrier” still seems legitimate as evidence against the possibility of construct-
ing general FSS/HSS (or even classes such as NC

1 or possibly AC
0) from weak

cryptographic assumptions such as the existence of one-way functions or oblivious
transfer.

Non-interactive key exchange (NIKE) & 2-message oblivious transfer (OT).
The power of additive multi-input HSS (where inputs from di↵erent parties can be
homomorphically computed on together; c.f. Definition 1.1.4) seems to be much
greater than its single-input counterpart. Whereas constructions for single-input
HSS exist for some function classes from OWF, to date all constructions of multi-
input HSS rely on a select list of heavily structured assumptions: DDH, LWE, and
obfuscation [21, 49].

It appears this is in some sense inherent: As shown in [25], even a minimal
version of 2-party, 2-server additive HSS for the AND of two input bits implies
the existence of non-interactive key exchange (NIKE) [44], a well-studied crypto-
graphic notion whose known constructions are similarly limited to select structured
assumptions. NIKE is black-box separated from one-way functions and highly un-
likely to be implied by generic public-key encryption or oblivious transfer. On the
other hand, this same type of (2, 2)-additive-HSS for AND is unlikely to be implied
by NIKE, as the primitive additionally implies the existence of 2-message oblivi-
ous transfer (OT) [21], unknown to follow from NIKE alone. Further connections
from HSS to 2-round secure computation have been demonstrated in [23, 25].

10Recall in HSS the secret share size scales with input size and not function description size.

42 CHAPTER 1. FSS AND HSS

Worst-case to average-case reductions. A di↵erent type of implication of HSS
is in obtaining worst-case to average-case reductions in P. Roughly speaking, the
HSS evaluation function Eval for homomorphically evaluating a function F defines
a new function F0 such that computing F on any given input x can be reduced to
computing F0 on two or more inputs that are individually pseudorandom (corre-
sponding to the HSS secret shares of x). A similar application was pointed out
in [37] using fully homomorphic encryption (FHE) (and a significantly weaker
version in [57] using DPF). Compared to the FHE-based reductions, the use of
HSS has the advantages of making only a constant number of queries to a Boolean
function F0 (as small as 2), and minimizing the complexity of recovering the out-
put from the answers to the queries. The latter can lead to e�ciency advantages
in the context of applications (including the settings of fine-grained average-case
hardness and verifiable computation; see [25]). It also gives rise to worst-case to
average-case reductions under assumptions that are not known to imply FHE, such
as the DDH assumption.

1.3.2 Applications in the One-Way Function Regime

FSS in the “low-end” regime has interesting applications to e�cient private ma-
nipulation of remotely held databases, extending the notions of Private Informa-
tion Retrieval (PIR) [36] and Private Information Storage [70] to more expressive
instruction sets. Recently, FSS has also been shown to yield concrete e�ciency
improvements in secure 2-party computation protocols for programs with data-
dependent memory accesses. We describe these in greater detail below.

Multi-server PIR and secure keyword search. Suppose that each of m servers
holds a database D of keywords w j 2 {0, 1}n. A client wants to count the number
of occurrences of a given keyword w without revealing w to any strict subset of
the servers. Letting G = Zm+1 and f = fw,1 (the point function evaluating to 1 on
target value w), the client can split f into m additive shares and send to server i the
key ki describing fi. Server i computes and sends back to the client

P
w j2D fi(w j).

The client can then find the number of matches by adding the m group elements
received from the servers. Standard PIR corresponds to the same framework with
point function fi,1 for target data index i. In this application, FSS for other classes
F can be used to accommodate richer types of search queries, such as counting
the number of keywords that lie in an interval, satisfy a fuzzy match criterion, etc.
We note that by using standard randomized sketching techniques, one can obtain
similar solutions that do not only count the number of matches but also return the
payloads associated with a bounded number of matches (see, e.g., [71]).

Splinter [81]. In this fashion, FSS for point functions and intervals are the core

1.3. APPLICATIONS AND IMPLICATIONS 43

of the system Splinter [81], serving private search queries on a Yelp clone of restau-
rant reviews, airline ticket search, and map routing. On top of the functionalities
o↵ered directly by the FSS, the system supports more expressive queries, such as
MAX/MIN and TOP-k, by manipulating the database on the server side such that a
point function / interval search on the modified database answers the desired query.
(Here the type of query is revealed, but the search parameters are hidden.) Splinter
reports end-to-end latencies below 1.6 seconds for realistic workloads, including
search within a Yelp-like database comparable to 40 cities, and routing within real
tra�c-map data for New York City.

Incremental secret sharing. Suppose that we want to collect statistics about web
usage of mobile devices without compromising the privacy of individual users, and
while allowing fast collection of real-time aggregate usage data. A natural solution
is to maintain a large secret-shared array of group elements between m servers,
where each entry in the array is initialized to 0 and is incremented whenever the
corresponding web site is visited. A client who visits URL u can now secret-share
the point function f = fu,1, and each server i updates its shared entry of each URL
u j by locally adding fi(u j) to this share. The end result is that only position u j in the
shared array is incremented, while no collusions involving strict subsets of servers
learn which entry was incremented. Here too, applying general FSS can allow for
more general “attribute-based” writing patterns, such as secretly incrementing all
entries whose public attributes satisfy some secret predicate. The above incremen-
tal secret sharing primitive can be used to obtain low-communication solutions to
the problem of private information storage [70], the “writing” analogue of PIR.

Riposte [38]. FSS for point functions on a 220-entry database are used in this
way in the anonymous broadcast system Riposte of Corrigan-Gibbs et al. [38].
Roughly, in the system each user splits his message msg as a point function fr,msg

for a random position index r 2 [220]. Shares of such functions across many users
are combined additively by each server, and ultimately the aggregate is revealed.
FSS security guarantees that the link from each individual user to his contributed
message remains hidden. An improved variant of Riposte, called Spectrum, was
recently presented in [68].

Protecting against malicious clients. In some applications, malicious clients
may have incentive to submit bogus FSS shares to the servers, corresponding to
illegal manipulations of the database. This can have particularly adverse e↵ects in
writing applications, e.g., casting a “heavy” vote in a private poll, or destroying
the current set of anonymous broadcast messages. Because of this, it is desirable
to have e�cient targeted protocols that enable a client to prove the validity of his
request before it is implemented, via minimal interaction between the client and

44 CHAPTER 1. FSS AND HSS

servers. Such protocols have been designed for certain forms of DPFs and related
primitives in [38, 22, 11].

Secure 2-party computation (2PC) of RAM programs. A standard challenge
in designing secure computation protocols is e�ciently supporting data-dependent
memory accesses, without leaking information on which items were accessed (and
in turn on secret input values). Since the work of [70], this is typically addressed
using techniques of Oblivious RAM (ORAM) [61] to transform a memory access
to a secret index i from data size N into a sequence of polylog(N) memory ac-
cesses whose indices appear independent of i. Indeed, a recent line of works have
implemented and optimized systems for ORAM in secure computation.

Floram [79]. In a surprising development, Doerner and shelat [79] demon-
strated an FSS-based 2PC system that—despite its inherent poor O(N) asymptotic
computation per private access of each secret index i (instead of polylog(N))—
concretely outperforms current ORAM-based solutions. In their construction, sim-
ilar to use of ORAM in 2PC, the two parties in the secure computation act as the
two servers in the FSS scheme, and an underlying secure computation between
the parties emulates the role of the client. The core savings of their approach is
that, while the overall computation is high, the emulation of “client” operations in
the FSS requires a very small secure computation in comparison to prior ORAM
designs (up to one hundred times smaller for the memory sizes they explore). A
key technical ingredient of Floram, that was used in subsequent works on PCGs,
is a concretely e�cient protocol for distributing the key generation of a DPF in
which the communication cost is comparable to the key size and the computation
cost to the input domain size. Their implemented 2PC system Floram [79] (“FSS
Linear ORAM”) outperforms the fastest previously known ORAM implementa-
tions, Circuit ORAM [82] and Square-root ORAM [88], for datasets that are 32
KiB or larger, and outperforms prior work on applications such as secure stable
matching [50] or binary search [62] by factors of two to ten.

Distributed ORAM. Following the construction of Doerner and shelat, dis-
tributed ORAM protocol were described in the 2-party [63] and 3-party [30] set-
tings. The construction of [30] was very recently improved in [31].

Mixed-mode secure computation. Secure computation protocols typically op-
erate over secret-shared values and employ atomic protocols to convert shares of
inputs into shares of the outputs of some component of the computation (e.g. a
product gate). In [24], a new approach was developed to allow the atomic com-
putation of more complex gates, with a minimal online communication, follow-
ing an input-independent preprocessing. This approach handles any gate that ad-
mits an e�cient FSS scheme, and achieves exponential improvement over previous
methods for many important types of gates, such as equality tests or comparison

1.3. APPLICATIONS AND IMPLICATIONS 45

predicates. This provides a unifying framework for secure computation with corre-
lated randomness of functions that involve various interconnected, possibly com-
plex components. The approach was further generalized and optimized in [13].
An application of this method to privacy-preserving deep learning was developed
in [77].

Private heavy hitters. Private heavy hitters allow multiple clients, each holding
a bitstring, to securely recover the set of all popular bitstrings, by interacting with
a small number of data-collection servers. The problem of privately realizing this
functionality comes up in a variety of real-world data-collection applications. A
solution to the problem with two servers using function secret sharing was recently
described in [11].

Private set intersection and contact tracing. A private set intersection (PSI)
protocol allows two parties to compute the intersection of their respective sets,
without leaking elements outside of the intersection. PSI protocols have been the
subject of an intense research e↵ort, and can be used for contact recovery, and in
a variety of medical applications. The latest, most optimized PSI protocols [73]
employ the FSS-based PCG for VOLE of [14]. FSS-based constructions of PSI
tailored to contact tracing applications were also recently described in [80, 47].

1.3.3 Applications in the LPN and Public-Key Regime

In the “high-end” regime, HSS can serve as a competitive alternative to FHE in
certain application settings. Fully homomorphic encryption (FHE) [75, 54] is com-
monly viewed as a “dream tool” in cryptography, enabling one to perform arbitrary
computations on encrypted inputs. For example, in the context of secure multiparty
computation (MPC) [87, 60, 8, 33], FHE can be used to minimize the communica-
tion complexity and the round complexity, and shift the bulk of the computational
work to any subset of the participants. However, despite exciting progress in the
past years, even the most recent implementations of FHE [64, 51, 34] are still quite
slow and require large ciphertexts and keys. This is due in part to the limited set
of assumptions on which FHE constructions can be based [45, 29, 55], which are
all related to lattices and are therefore susceptible to lattice reduction attacks. As
a result, it is arguably hard to find realistic application scenarios in which current
FHE implementations outperform optimized versions of classical secure compu-
tation techniques (such as garbled circuits) when taking both communication and
computation costs into account.

A main motivating observation is that unlike standard FHE, HSS can be use-
ful even for small computations that involve short inputs, and even in application
scenarios in which competing approaches based on traditional secure computation

46 CHAPTER 1. FSS AND HSS

techniques do not apply at all.
As with FHE, HSS enables secure computation protocols that simultaneously

o↵er a minimal amount of interaction and collusion resistance. However, the op-
timal output compactness of HSS makes it the only available option for appli-
cations that involve computing long outputs (or many short outputs) from short
secret inputs (possibly along with public inputs). More generally, this feature en-
ables applications in which the communication and computation costs of output
reconstruction need to be minimized, e.g., for the purpose of reducing power con-
sumption. For instance, a mobile client may wish to get quickly notified about live
news items that satisfy certain secret search criteria, receiving a fast real-time feed
that reveals only pointers to matching items. Further advantages of group-based
HSS over existing FHE implementations include smaller keys and ciphertexts and
a lower startup cost.

Low-communication 2PC using LPN-based HSS. Following a template estab-
lished in [21], any homomorphic secret sharing scheme for a class C gives rise
to a low-communication secure computation protocol for the same class. Then,
when larger circuits can be divided into consecutive “chunks” where each chunk
is a circuit from the smaller class C, the result generalized to low-communication
protocols for this larger class (albeit with much smaller asymptotic savings). An
interesting consequence of this connection is that it allows expanding the set of
assumptions under which secure computation is feasible with sublinear commu-
nication – something that was long restricted to the assumptions that imply fully-
homomorphic encryption. We summarize below the results obtained by instantiat-
ing this approach with the HSS construction from Section 1.2.4.

Corollary 1.3.1. Suppose the (HWt,n0 ,C,Fp)-dual-LPN(n0, n) assumption holds,
and that MPFSS is a secure multi-point FSS scheme. Then there exists a 2-party
secure computation protocol with semi-honest security for general degree-d mul-
tivariate polynomials over F, with communication Õ(n + td) and computational
complexity O((n · n0)d).

In particular, applying the above corollary to layered circuits, we obtain a
generic secure two-party protocol from LPN with communication smaller than the
circuit size:

Corollary 1.3.2. Suppose the (HWt,n0 ,C,Fp)-dual-LPN(n0, n) assumption holds,
and that MPFSS is a secure multi-point FSS scheme. Then for any constant c,
there exists a 2-party secure computation protocol with semi-honest security for
arbitrary layered circuits of size s, with total communication bounded by s/c, and
computational complexity bounded by s · �2O(c)

.

1.3. APPLICATIONS AND IMPLICATIONS 47

Using a more intricate construction, Couteau and Meyer [39] have extended
the above result to show that assuming the superpolynomial hardness of LPN,
there exists an HSS scheme for the class of log log-depth circuits. Applying this
HSS scheme to layered circuits leads to sublinear communication two-party secure
computation protocols (with total communication bounded by O(s/ log log s)).

Low-communication 2PC using DDH-based HSS. Instantiating the approach of
Boyle et al. [21] using the DDH-based HSS scheme of Section 1.2.5 instead, we
get the following corollary:

Corollary 1.3.3. Suppose that the DDH assumption holds. Then there exists a 2-
party secure computation protocol with semi-honest security for arbitrary layered
circuits of size s, with total communication bounded by O(s/ log s), and computa-
tional complexity bounded by O(s1+✏), for an arbitrary constant ✏ > 0.

The above follows from the fact that log-depth circuits can be computed by
polynomial-size RMS programs. Since the DDH-based HSS only enjoys approx-
imate correctness, some additional machinery is required to achieve this result; in
particular, one must use appropriate error-correcting codes computable by RMS
programs to encode the output of each HSS computation, and correct the errors
before going on. We omit the details in this high level presentation. Of course, the
same result can be established under the DCR assumption using the HSS scheme
of [69, 76], with a significantly simpler analysis since no error correction is re-
quired.

Secure MPC with minimal interaction. Using multi-input HSS, a set of clients
can outsource a secure computation to two non-colluding servers by using the fol-
lowing minimal interaction pattern: each client independently sends a single mes-
sage to the servers (based on its own input and the public key), and then each server
sends a single message to each client. Alternatively, servers can just publish shares
of the output if the output is to be made public. The resulting protocol is resilient
to any (semi-honest) collusion between one server and a subset of the clients, and
minimizes the amount of work performed by the clients. It is particularly attrac-
tive in the case where many “simple” computations are performed on the same
inputs. In this case, each additional instance of secure computation involves just
local computation by the servers, followed by a minimal amount of communication
and work by the clients.

Secure data access. HSS yields several di↵erent applications in the context of
secure access to distributed data. For example, HSS can be used to construct a
2-server variant of attribute based encryption, in which each client can access an
encrypted file only if its (public or encrypted) attributes satisfy an encrypted pol-
icy set up by the data owner. Other sample applications include 2-server private

48 CHAPTER 1. FSS AND HSS

RSS feeds, in which clients can receive succinct notifications about new data that
satisfies their encrypted matching criteria, and 2-server PIR schemes with general
boolean queries. These applications benefit from the optimal output compactness
feature of HSS discussed above, minimizing the communication from servers to
clients and the computation required for reconstructing the output.

Unlike competing solutions based on classical secure computation techniques,
HSS-based solutions only involve minimal interaction between clients and servers
and no direct interaction between servers. In fact, for the RSS feed and PIR appli-
cations, the client is free to choose an arbitrary pair of servers who have access to
the data being privately searched. These servers do not need to be aware of each
other’s identity, and do not even need to know they are participating in an HSS-
based cryptographic protocol: each server can simply run the code provided by
the client on the (relevant portion of) the data, and return the output directly to the
client.

Pseudorandom correlation generators and secure computation with silent pre-
processing. As shown in this chapter, function secret sharing is closely related to
the notion of PCGs. In turn, PCGs enable local generation of large amounts of cor-
related pseudorandomness that can be used to speed up classical protocols for se-
cure two-party computation. Concretely, following a small-communication setup
phase, the parties can locally expand these shares (without any communication)
into useful forms of correlated randomness. This approach leads to the notion of
secure computation with silent preprocessing, which was put forth in [16, 15].

PCGs were informally introduced in [19]. E�cient constructions were subse-
quently developed in [14, 16, 18]. These constructions led to the development of
increasingly e�cient silent secure computation protocols in [15, 78, 86, 83], cul-
minating with the recent work of [40]. Pseudorandom correlation generators were
generalized to pseudorandom correlation functions in [17], enabling an unbounded
generation of correlated randomness from a one-time short interaction.

PCGs and zero-knowledge proofs. PCGs have been shown to be a key primitive
for the construction of extremely e�cient zero-knowledge proof systems, leading
to an impressive sequence of works [14, 83, 5, 48, 84, 85, 4].

Secure computation with minimal interaction. We conclude this chapter by
mentioning the application of HSS and PCGs to minimizing interaction in secure
computation. The work of [2] showed how HSS can be used to construct general
two-round protocols for secure multiparty computation in which the messages of
the first round are reusable. Similar protocols were previously known only under
the LWE assumption. This result was later shown to hold also under the LPN
assumption in [3].

Bibliography

[1] Alekhnovich, M.: More on average case vs approximation complexity. In:
44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14
October 2003, Cambridge, MA, USA, Proceedings. pp. 298–307. IEEE Com-
puter Society (2003), https://doi.org/10.1109/SFCS.2003.1238204

[2] Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round mpc
from ddh. In: Theory of Cryptography Conference. pp. 320–348. Springer
(2020)

[3] Bartusek, J., Garg, S., Srinivasan, A., Zhang, Y.: Reusable two-round mpc
from lpn. IACR Cryptol. ePrint Arch. 2021, 316 (2021)

[4] Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: Appenzeller to brie:
E�cient zero-knowledge proofs for mixed-mode arithmetic and z2k (2021)

[5] Baum, C., Malozemo↵, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: Zero-
knowledge proofs for boolean and arithmetic circuits with nested disjunc-
tions. In: Annual International Cryptology Conference. pp. 92–122. Springer
(2021)

[6] Beimel, A., Burmester, M., Desmedt, Y., Kushilevitz, E.: Computing func-
tions of a shared secret. SIAM J. Discrete Math. 13(3), 324–345 (2000)

[7] Beimel, A., Ishai, Y., Kushilevitz, E., Orlov, I.: Share conversion and private
information retrieval. In: CCC 2012. pp. 258–268 (2012)

[8] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC. pp. 1–10 (1988)

[9] Benaloh, J.C.: Secret sharing homomorphisms: Keeping shares of a secret
secret. In: CRYPTO. pp. 251–260 (1986)

49

https://doi.org/10.1109/SFCS.2003.1238204

50 BIBLIOGRAPHY

[10] Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives
based on hard learning problems. In: Advances in Cryptology - CRYPTO ’93,
13th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 22-26, 1993, Proceedings. pp. 278–291 (1993), https://doi.
org/10.1007/3-540-48329-2_24

[11] Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Lightweight
techniques for private heavy hitters. In: 2021 IEEE Symposium on Security
and Privacy (SP). pp. 762–776. IEEE (2021)

[12] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from decision di�e-hellman. In: Advances in Cryptology - CRYPTO.
pp. 108–125 (2008)

[13] Boyle, E., Chandran, N., Gilboa, N., Gupta, D., Ishai, Y., Kumar, N., Rathee,
M.: Function secret sharing for mixed-mode and fixed-point secure compu-
tation. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II.
LNCS, vol. 12697, pp. 871–900. Springer, Heidelberg, Germany, Zagreb,
Croatia (Oct 17–21, 2021)

[14] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In:
Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 896–
912. ACM Press, Toronto, ON, Canada (Oct 15–19, 2018)

[15] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.:
E�cient two-round OT extension and silent non-interactive secure computa-
tion. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019.
pp. 291–308. ACM Press (Nov 11–15, 2019)

[16] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: E�-
cient pseudorandom correlation generators: Silent OT extension and more.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS,
vol. 11694, pp. 489–518. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 18–22, 2019)

[17] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Corre-
lated pseudorandom functions from variable-density LPN. In: 61st FOCS.
pp. 1069–1080. IEEE Computer Society Press, Durham, NC, USA (Nov 16–
19, 2020)

[18] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: E�-
cient pseudorandom correlation generators from ring-LPN. In: Micciancio,

https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-48329-2_24

BIBLIOGRAPHY 51

D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–
416. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21,
2020)

[19] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret
sharing: Optimizations and applications. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2105–2122. ACM Press,
Dallas, TX, USA (Oct 31 – Nov 2, 2017)

[20] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–
367. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015)

[21] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 14–18, 2016)

[22] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and
extensions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) ACM CCS 2016. pp. 1292–1303. ACM Press, Vienna, Aus-
tria (Oct 24–28, 2016)

[23] Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: Optimiz-
ing rounds, communication, and computation. In: Coron, J.S., Nielsen, J.B.
(eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer,
Heidelberg, Germany, Paris, France (Apr 30 – May 4, 2017)

[24] Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via
function secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I.
LNCS, vol. 11891, pp. 341–371. Springer, Heidelberg, Germany, Nuremberg,
Germany (Dec 1–5, 2019)

[25] Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of ho-
momorphic secret sharing. In: Karlin, A.R. (ed.) ITCS 2018. vol. 94, pp.
21:1–21:21. LIPIcs, Cambridge, MA, USA (Jan 11–14, 2018)

[26] Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices
without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II.
LNCS, vol. 11477, pp. 3–33. Springer, Heidelberg, Germany, Darmstadt,
Germany (May 19–23, 2019)

52 BIBLIOGRAPHY

[27] Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key en-
cryption under subgroup indistinguishability - (or: Quadratic residuosity
strikes back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–
20. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 15–19,
2010)

[28] Brakerski, Z., Lyubashevsky, V., Vaikuntanathan, V., Wichs, D.: Worst-
case hardness for LPN and cryptographic hashing via code smoothing. In:
Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019
- 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceed-
ings, Part III. Lecture Notes in Computer Science, vol. 11478, pp. 619–635.
Springer (2019), https://doi.org/10.1007/978-3-030-17659-4_21

[29] Brakerski, Z., Vaikuntanathan, V.: E�cient fully homomorphic encryption
from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

[30] Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: E�cient 3-party distributed
ORAM. In: Galdi, C., Kolesnikov, V. (eds.) SCN 20. LNCS, vol. 12238, pp.
215–232. Springer, Heidelberg, Germany, Amalfi, Italy (Sep 14–16, 2020)

[31] Bunn, P., Kushilevitz, E., Ostrovsky, R.: CNF-FSS and its applications. IACR
Cryptol. ePrint Arch. 2021, 163 (2021)

[32] Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate
degree-2 functions on encrypted data. In: Ray, I., Li, N., Kruegel, C. (eds.)
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, Denver, CO, USA, October 12-16, 2015. pp. 1518–
1529. ACM (2015), https://doi.org/10.1145/2810103.2813624

[33] Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure pro-
tocols (extended abstract). In: STOC. pp. 11–19 (1988)

[34] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homo-
morphic encryption: Bootstrapping in less than 0.1 seconds. In: Asiacrypt’16.
pp. 3–33 (2016)

[35] Chor, B., Gilboa, N.: Computationally private information retrieval (extended
abstract). In: Proceedings of 29th Annual ACM Symposium on the Theory
of Computing. pp. 304–313 (1997)

[36] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information re-
trieval. J. ACM 45(6), 965–981 (1998)

https://doi.org/10.1007/978-3-030-17659-4_21
https://doi.org/10.1145/2810103.2813624

BIBLIOGRAPHY 53

[37] Chung, K.M., Kalai, Y., Vadhan, S.P.: Improved delegation of computation
using fully homomorphic encryption. In: CRYPTO (2010)

[38] Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: An anonymous mes-
saging system handling millions of users. In: IEEE Symposium on Security
and Privacy, SP. pp. 321–338 (2015)

[39] Couteau, G., Meyer, P.: Breaking the circuit size barrier for secure compu-
tation under quasi-polynomial LPN. In: Canteaut, A., Standaert, F.X. (eds.)
EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 842–870. Springer, Hei-
delberg, Germany, Zagreb, Croatia (Oct 17–21, 2021)

[40] Couteau, G., Rindal, P., Raghuraman, S.: Silver: Silent vole and oblivious
transfer from hardness of decoding structured ldpc codes. In: Annual Inter-
national Cryptology Conference. pp. 502–534. Springer (2021)

[41] Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-
sharing and applications to secure computation. In: Kilian, J. (ed.) Theory
of Cryptography, Second Theory of Cryptography Conference, TCC 2005,
Cambridge, MA, USA, February 10-12, 2005, Proceedings. Lecture Notes in
Computer Science, vol. 3378, pp. 342–362. Springer (2005), https://doi.
org/10.1007/978-3-540-30576-7_19

[42] De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function
securely. In: Proceedings of 26th Annual ACM Symposium on Theory of
Computing. pp. 522–533 (1994)

[43] Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Advances in Cryptol-
ogy - CRYPTO. pp. 307–315 (1989)

[44] Di�e, W., Hellman, M.: New directions in cryptography. IEEE Transactions
on Information Theory 22(6), 644–654 (1976)

[45] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: EUROCRYPT. pp. 24–43 (2010)

[46] Dinur, I., Keller, N., Klein, O.: An optimal distributed discrete log pro-
tocol with applications to homomorphic secret sharing. In: Shacham, H.,
Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018 - 38th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2018, Proceedings, Part III. Lecture Notes in Computer Science,
vol. 10993, pp. 213–242. Springer (2018), https://doi.org/10.1007/
978-3-319-96878-0_8

https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-319-96878-0_8
https://doi.org/10.1007/978-3-319-96878-0_8

54 BIBLIOGRAPHY

[47] Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R., Elsabagh, M., Kiourtis, N.,
Schulte, B., Stavrou, A.: Function secret sharing for psi-ca: With applica-
tions to private contact tracing. arXiv preprint arXiv:2012.13053 (2020)

[48] Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its ap-
plications. In: 2nd Conference on Information-Theoretic Cryptography (ITC
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

[49] Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its
applications. In: CRYPTO 2016. pp. 93–122 (2016)

[50] Doerner, J., Evans, D., Shelat, A.: Secure stable matching at scale. In: ACM
SIGSAC CCS. pp. 1602–1613 (2016)

[51] Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption
in less than a second. In: EUROCRYPT. pp. 617–640 (2015)

[52] Fazio, N., Gennaro, R., Jafarikhah, T., Skeith, W.E.: Homomorphic secret
sharing from paillier encryption. In: ProvSec. pp. 381–399 (2017)

[53] Fosli, I., Ishai, Y., Kolobov, V.I., Wootters, M.: On the download rate of
homomorphic secret sharing. In: ITCS 2022 (2022), full version: Cryptology
ePrint Archive, Report 2021/1532.

[54] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC.
pp. 169–178 (2009)

[55] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In:
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I. pp.
75–92 (2013), http://dx.doi.org/10.1007/978-3-642-40041-4_5

[56] Gilboa, N., Ishai, Y.: Compressing cryptographic resources. In: Wiener, M.J.
(ed.) CRYPTO’99. LNCS, vol. 1666, pp. 591–608. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 15–19, 1999)

[57] Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
640–658. Springer, Heidelberg, Germany, Copenhagen, Denmark (May 11–
15, 2014)

[58] Goldreich, O.: Foundations of Cryptography — Basic Tools. Cambridge Uni-
versity Press (2001)

http://dx.doi.org/10.1007/978-3-642-40041-4_5

BIBLIOGRAPHY 55

[59] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[60] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: STOC. pp.
218–229 (1987)

[61] Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivi-
ous RAMs. J. ACM 43(3), 431–473 (1996)

[62] Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M.,
Vahlis, Y.: Secure two-party computation in sublinear (amortized) time. In:
ACM CCS. pp. 513–524 (2012)

[63] Gordon, S.D., Katz, J., Wang, X.: Simple and e�cient two-server ORAM.
In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol.
11274, pp. 141–157. Springer, Heidelberg, Germany, Brisbane, Queensland,
Australia (Dec 2–6, 2018)

[64] Halevi, S., Shoup, V.: Bootstrapping for helib. In: Advances in Cryptology -
EUROCRYPT. pp. 641–670 (2015)

[65] Ishai, Y., Lai, R.W.F., Malavolta, G.: A geometric approach to homomorphic
secret sharing. In: Garay, J.A. (ed.) Public-Key Cryptography - PKC 2021 -
24th IACR International Conference on Practice and Theory of Public Key
Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part II. Lecture
Notes in Computer Science, vol. 12711, pp. 92–119. Springer (2021), https:
//doi.org/10.1007/978-3-030-75248-4_4

[66] Kalyanasundaram, B., Schnitger, G.: The probabilistic communication com-
plexity of set intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)

[67] Lai, R.W.F., Malavolta, G., Schröder, D.: Homomorphic secret sharing for
low degree polynomials. In: Peyrin, T., Galbraith, S.D. (eds.) Advances
in Cryptology - ASIACRYPT 2018 - 24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part III. Lecture Notes
in Computer Science, vol. 11274, pp. 279–309. Springer (2018), https:
//doi.org/10.1007/978-3-030-03332-3_11

[68] Newman, Z., Servan-Schreiber, S., Devadas, S.: Spectrum: High-bandwidth
anonymous broadcast with malicious security. IACR Cryptol. ePrint Arch.
2021, 325 (2021)

https://doi.org/10.1007/978-3-030-75248-4_4
https://doi.org/10.1007/978-3-030-75248-4_4
https://doi.org/10.1007/978-3-030-03332-3_11
https://doi.org/10.1007/978-3-030-03332-3_11

56 BIBLIOGRAPHY

[69] Orlandi, C., Scholl, P., Yakoubov, S.: The rise of paillier: Homomorphic
secret sharing and public-key silent OT. In: Canteaut, A., Standaert, F.X.
(eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 678–708. Springer,
Heidelberg, Germany, Zagreb, Croatia (Oct 17–21, 2021)

[70] Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In:
ACM Symposium on the Theory of Computing. pp. 294–303 (1997)

[71] Ostrovsky, R., Skeith III, W.: Private searching on streaming data. In: Ad-
vances in Cryptology - CRYPTO 2005. pp. 223–240 (2005)

[72] Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg, Germany, Prague, Czech Republic (May 2–6, 1999)

[73] Rindal, P., Schoppmann, P.: VOLE-PSI: Fast OPRF and circuit-PSI from
vector-OLE. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part II. LNCS, vol. 12697, pp. 901–930. Springer, Heidelberg, Germany, Za-
greb, Croatia (Oct 17–21, 2021)

[74] Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy ho-
momorphisms. In: Foundations of secure computation (Workshop, Georgia
Inst. Tech., Atlanta, Ga., 1977), pp. 169–179

[75] Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy ho-
momorphisms. In: Foundations of secure computation (Workshop, Georgia
Inst. Tech., Atlanta, Ga., 1977), pp. 169–179. Academic, New York (1978)

[76] Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR
and applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III.
LNCS, vol. 12827, pp. 687–717. Springer, Heidelberg, Germany, Virtual
Event (Aug 16–20, 2021)

[77] Ry↵el, T., Tholoniat, P., Pointcheval, D., Bach, F.: Ariann: Low-interaction
privacy-preserving deep learning via function secret sharing. arXiv preprint
arXiv:2006.04593 (2020)

[78] Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-
OLE: Improved constructions and implementation. In: Cavallaro, L., Kinder,
J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 1055–1072. ACM Press
(Nov 11–15, 2019)

[79] Shelat, A., Doerner, J.: Scaling ORAM for secure computation. In: ACM
SIGSAC CCS (2017)

BIBLIOGRAPHY 57

[80] Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione: Lightweight
contact tracing with strong privacy. arXiv preprint arXiv:2004.13293 (2020)

[81] Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V., Zaharia, M.: Splinter:
Practical private queries on public data. In: 14th USENIX Symposium on
Networked Systems Design and Implementation, NSDI. pp. 299–313 (2017)

[82] Wang, X., Chan, T.H., Shi, E.: Circuit ORAM: on tightness of the goldreich-
ostrovsky lower bound. In: ACM SIGSAC CCS. pp. 850–861 (2015)

[83] Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and
communication-e�cient zero-knowledge proofs for boolean and arithmetic
circuits. In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 1074–
1091. IEEE (2021)

[84] Weng, C., Yang, K., Xie, X., Katz, J., Wang, X.: Mystique: E�cient conver-
sions for zero-knowledge proofs with applications to machine learning. In:
30th {USENIX} Security Symposium ({USENIX} Security 21). pp. 501–518
(2021)

[85] Yang, K., Sarkar, P., Weng, C., Wang, X.: Quicksilver: E�cient and a↵ord-
able zero-knowledge proofs for circuits and polynomials over any field. IACR
Cryptol. ePrint Arch. 2021, 76 (2021)

[86] Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated ot with small communication. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1607–
1626 (2020)

[87] Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In:
FOCS. pp. 162–167 (1986)

[88] Zahur, S., Wang, X.S., Raykova, M., Gascón, A., Doerner, J., Evans, D.,
Katz, J.: Revisiting square-root ORAM: e�cient random access in multi-
party computation. In: IEEE Symposium on Security and Privacy, SP. pp.
218–234 (2016)

	Function Secret Sharing and Homomorphic Secret Sharing
	Definitions and Discussion
	Basic Notation
	Function Secret Sharing: Targeting Applications
	Homomorphic Secret Sharing: A General Definition
	On the Output Decoding Structure of FSS/HSS
	Pseudorandom Correlation Generators
	Homomorphic Secret Sharing vs. Pseudorandom Correlation Generators
	Further Discussions
	Historical Notes

	Constructions of FSS and HSS
	Cryptographic Assumptions
	An Overview of the State of the Art
	Distributed Point Function from OWF
	HSS for Constant-Degree Polynomials from LPN
	HSS for Branching Programs from DDH
	Full-Fledged HSS for Branching Program from DCR

	Applications and Implications
	Relation to Other Primitives
	Applications in the One-Way Function Regime
	Applications in the LPN and Public-Key Regime

