Eyal Skop: "Efficient Vertex-Label Distance Oracles Over Planar Graphs"

×

Error message

  • Deprecated function: Creation of dynamic property LdapUserConf::$createLDAPAccounts is deprecated in LdapUserConf->load() (line 265 of /var/lib/drupal7/modules/ldap/ldap_user/LdapUserConf.class.php).
  • Deprecated function: Creation of dynamic property LdapUserConf::$createLDAPAccountsAdminApproval is deprecated in LdapUserConf->load() (line 266 of /var/lib/drupal7/modules/ldap/ldap_user/LdapUserConf.class.php).

We consider distance queries in vertex labeled planar graphs. For any fixed $0 < \varepsilon \leq 1/2$ we show how to preprocess a planar graph with vertex labels and edge lengths into a data structure that answers queries of the following form. Given a vertex $u$ and a label $\lambda$ return a $(1+O(\varepsilon))$-approximation of the distance between $u$ and its closest vertex with label $\lambda$.

For an undirected $n$-vertex planar graph the preprocessing time is $O(\varepsilon^{-2}n\lg^{3}{n})$, the size is $O(\varepsilon^{-1}n\lg{n})$, and the query time is $O(\log\log{n} + \varepsilon^{-1})$.

For a directed planar graph with arc lengths bounded by $N$,  the preprocessing time is $O(\varepsilon^{-2}n\lg^{3}{n}\lg(nN))$, the data structure size is $O(\varepsilon^{-1}n\lg{n}\lg(nN))$, and the query time is $O(\log\log{n}\log\log(nN) + \varepsilon^{-1})$.

Date and Time: 
Thursday, March 26, 2015 - 13:30 to 14:30
Speaker: 
Eyal Skop
Location: 
IDC, C.110
Speaker Bio: 

Eyal Skop, IDC Herzliya