
R

G
S

a

A
R
R
A

K
A
S
M
T
R

1

s
c
[
c
(
l
r
s
e
o
m
c
a
i

c
w

r

h
2

Sustainable Computing: Informatics and Systems 4 (2014) 241–251

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

jou rn al hom ep age: www.elsev ier .com/ locate /suscom

eoptimization of the minimum total flow-time scheduling problem�

uy Baram, Tami Tamir ∗

chool of Computer Science, The Interdisciplinary Center, Herzliya, Israel

 r t i c l e i n f o

rticle history:
eceived 28 February 2014
eceived in revised form 2 July 2014
ccepted 11 August 2014

eywords:
lgorithms
cheduling

a b s t r a c t

We consider reoptimization problems arising in dynamic scheduling environments, such as manufactur-
ing systems and virtual machine managers. Due to changes in the environment (out-of-order or new
resources, modified jobs’ processing requirements, etc.), the schedule needs to be modified. That is, jobs
might be migrated from their current machine to a different one. Migrations are associated with a cost
– due to relocation overhead and machine set-up times. In some systems, a migration is also associated
with job extension. The goal is to find a good modified schedule, with a low transition cost from the initial
one. We consider the objective of minimizing the total flow-time.
inimum flow-time
ransition cost
eoptimization

We present optimal algorithms for the problem of achieving an optimal solution using the minimal
possible transition cost. The algorithms and their running times depend on our assumptions on the
instance and the allowed modifications. For the modification of machines’ addition, we also present an
optimal algorithm for achieving the best possible schedule using a given limited budget for the transition.

© 2014 Elsevier Inc. All rights reserved.
. Introduction

This work studies a reoptimization variant of the classical
cheduling problem of minimizing the total flow-time on identi-
al machines (denoted in standard scheduling notation by P||

∑
Cj

16]). The minimum total flow-time problem can be solved effi-
iently by the simple greedy Shortest Processing Time algorithm
SPT) [30,9] that assigns the jobs in nondecreasing order by their
ength. This algorithm, as many other algorithms for combinato-
ial optimization problems, solves the problem from scratch, for a
ingle arbitrary instance without having any constraints or prefer-
nces regarding the required solution – as long as it achieves the
ptimal objective value. However, many of the real-life scenarios
otivating these problems involve systems that change dynami-

ally over time. Thus, throughout the continuous operation of such
 system, it is required to compute solutions for new problem
nstances, derived from previous instances.

Moreover, since the transition from one solution to another

onsumes energy (used for the physical migration of the job, for
arm-up or set-up of the machines, or for activation of the new

� A preliminary version of this paper appears in the proceedings of the 1st Mediter-
anean Conference on Algorithms (MedAlg) December 2012, Ein-Gedi, Israel.
∗ Corresponding author. Tel.: +972 99602779; fax: +972 9 9568604.

E-mail addresses: guy.baram@gmail.com (G. Baram), tami@idc.ac.il (T. Tamir).

ttp://dx.doi.org/10.1016/j.suscom.2014.08.011
210-5379/© 2014 Elsevier Inc. All rights reserved.
machines), a natural goal is to have the solution for the new instance
close to the original one (under certain distance measure).

Solving a reoptimization problem involves two challenges:

1 Computing an optimal (or close to the optimal) solution for the
new instance.

2 Efficiently converting the current solution to the new one.

Each of these challenges, even when considered alone, gives rise
to many theoretical and practical questions. Obviously, combining
the two challenges is an important goal, which shows up in many
applications.

Applications: The reoptimization problem of minimizing the
total flow-time arises naturally in manufacturing systems, where
jobs might be migrated among production lines. Due to unex-
pected changes in the environment (out-of-order or new machines,
timetables of task processing, etc.), the production schedule needs
to be modified. Rescheduling tasks involves energy-loss due to relo-
cation overhead and machine set-up times. In fact, our work is
relevant to any dynamic scheduling environment, in which migra-
tions of jobs are allowed though associated with an overhead
caused due to the need to handle the modification and to absorb the
migrating jobs in their new assignment. We describe below several

less natural applications in cloud computing and networking.

With the proliferation of cloud computing, more and more appli-
cations are deployed in the data centers. Live migration is a common
process in which a running virtual machine (VM) or application

dx.doi.org/10.1016/j.suscom.2014.08.011
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2014.08.011&domain=pdf
mailto:guy.baram@gmail.com
mailto:tami@idc.ac.il
dx.doi.org/10.1016/j.suscom.2014.08.011

2 ng: Informatics and Systems 4 (2014) 241–251

m
i
c
i
w
m
f
s
s
s
f
L
a
i
i
U
a
O
t
a
t
d
i

c
p
t
p
a
o
t
i
t

t
F
m
r
a
p
w
d
p
v
t
r
w
a
o
w
a

1

s
o
e
o
m
a

i
m
i

1

2

3

4

5

6

M1

M2

1 2

3

4

5

6M1

M2

1 2 3 4

5 6

M1

M2

(a) (b) (c)

1 2 3 4 5 6M1S0:

1 2

3+2

4 5

6+2

M1

M2

1 2 3 4 5

6+4

M1

M2

(d) (e)

Fig. 1. (Top) An initial assignment, (a) an optimal reassignment achieved with tran-

ited budget it is impossible to produce a schedule with lower total
flow-time. For ı = 4, only one job is migrated in the optimal solution∑
42 G. Baram, T. Tamir / Sustainable Computi

oves between different physical machines without disconnect-
ng the client or application [10]. Memory, storage, and network
onnectivity of the virtual machine are transferred from the orig-
nal host machine to the destination. Such migrations involve a

arm-up phase, and a memory-copy phase. In pre-copy memory
igration, the Hypervisor typically copies all the memory pages

rom source to destination while the VM is still running on the
ource. Alternatively, in post-copy memory migration the VM is
uspended, a minimal subset of the execution state of the VM (CPU
tate, registers and, optionally, non-pageable memory) is trans-
erred to the target, and the VM is then resumed at the target.
ive migration is performed in several VM managers such as Par-
llels Virtuozzo [25] and Xen [33]. Lot of attention, in both the
ndustry and the academia is given recently to the problem of min-
mizing the overhead associated with migrations (see e.g., [10,19]).
sing our notations, this refers to minimizing the transition costs
nd the job-extension penalties associated with rescheduling a job.
ur work focuses in determining the best possible schedule given

hese costs. Sequential processing of jobs that might be migrated
mong several processors is performed also in several implementa-
ions of MapReduce (e.g., [5]). These implementations assume that
ifferent segments of MapReduce computations can be processed

ndependently on remote computers [12].
Our reoptimization problem arises also in an RPC (Remote Pro-

edure Call) service. In this environment, a cloud of servers can
rovide service to a limited number of simultaneous users [8]. If
he number of requests is high, another virtual server could be tem-
orarily rented, where the cost for using it is per user. The options
re to put the RPC in a queue, thus causing latency in the service,
r renting more virtual servers, enabling faster service and paying
he additional servers’ cost. In this application, the transition cost
s not due to the migration itself, but due to the activation cost of
he additional resources.

Some of our results will be extended to consider modifications
hat occur after the processing has begun, that is, at time t > 0.
or this extension (see Section 3) we distinguish between environ-
ents in which the currently processed jobs can migrate and be

estarted on different machines, and applications in which restarts
re not allowed, and a currently processed job must complete its
artial processing. The following application describes a system in
hich restarts are not allowed: In a semiconductor wafers pro-
uction line, some of the coating methods involve purely physical
rocesses such as high temperature vacuum evaporation (physical
apor deposition – PVD). During the process, a vacuum is created
o enable the coating. Once the elements are in a vacuum envi-
onment, the process cannot be stopped as if the machine halts, it
ill be severely damaged [22]. Assume that at time t > 0 machines

re added. Transferring jobs is costly – to capture the transition
verhead and the changes required in programming the machines
orkplan. Also, the elements that are currently produced, that are

lready in vacuum state, must complete their production.

.1. Problem statement and notation

An instance of our problem consists of a set J0 of n0 jobs and a
et M0 of m0 identical machines. Denote by pj the processing time
f job j. A schedule S0 of the initial instance is given. That is, for
very job in J0, it is specified on which machine it is assigned and
n which time interval it is going to be processed. At any time, a
achine can process at most one job and a job can be processed by

t most one machine.

At time t ≥ 0, a change in the system occurs. Possible changes

nclude addition or removal of machines and/or jobs, as well as
odification of processing time of jobs in J0. Let J denote the mod-

fied set of jobs, and let n =
∣∣J
∣∣. Let M denote the modified set of
sition cost 3, (b) a possible, and (c) an optimal reassignments achieved with limited
budget B = 2, (d) an optimal reassignment assuming job-extension penalty ı = 2, and
(e) ı = 4.

machines, and let m =
∣∣M

∣∣. Our goal is to suggest a new schedule,
S, for the modified instance, with good objective value and small
transition cost form S0. Assignment of a job to a different machine
in S0 and S is denoted migration and is associated with a cost. For-
mally, we are given a price list �i,i′ ,j, such that it costs �i,i′ ,j to migrate
job j from machine i to machine i′.

Moreover, in some systems job migrations are also associated
with an extension of the job’s processing time. In this extended
model, in addition to the transition costs, we are given a job-
extension penalty list ıi,i′ ,j ≥ 0, such that the processing time of job
j is extended to pj + ıi,i′ ,j when it is migrated from machine i to
machine i′. We assume that all the involved parameters (processing
times, transition costs and extension penalties) are integers. Some
of our results assume unit transition costs, that is, for all j and i /= i′,
�i,i′ ,j = 1.1

For a given schedule, let Cj be the completion time of job j, that is,
the time when the process of j completes. In this work we consider
the problem of minimizing the sum of completion times, denote
by

∑
Cj and also known as total flow-time. In the reoptimization

problem, given S0, J and M, the goal is to find a good schedule for J
that is close to the initial schedule S0.

We consider two problems:

1 Rescheduling to an optimal schedule using the minimal possible
transition cost.

2 Given a budget B, find the best possible modified schedule that
can be achieved without exceeding the budget B.

Example 1. Assume that six jobs of lengths 1, . . ., 6 are sched-
uled on a single machine in an optimal SPT order. The total flow
time in this schedule is

∑
Cj = 56. Assume that a second machine

is added, and that all migrations have unit transition cost and
no job-extension penalties. Fig. 1(a) presents an optimal modified
schedule, for which the total flow-time is

∑
Cj = 34. Migrating jobs

appear in grey. The budget required to reach this schedule (or any
other schedule with

∑
Cj = 34) is 3. For a given budget, B = 2, it is

possible to move, for example, to the modified schedules given in
Fig. 1(b) and (c), having total flow-time 36 and 35, respectively. The
schedule (c) is optimal for this budget.

Assume further that all migrations are associated with the same
job-extension penalty, that is, for all i, i′, j, we have ıi,i′ ,j = ı. An opti-
mal solution for ı = 2 achieving

∑
Cj = 41 is given in Fig. 1(d). The

transition cost to this schedule is 2, however, even with unlim-
(that achieves Cj = 45), given in Fig. 1(e). The optimal algorithm

1 Note that the constant 1 can be replaced by any other constant.

G. Baram, T. Tamir / Sustainable Computing: Inf

1 2

3

M1

M2

(a) S0

4

M3

M1

M2

(b)

M3

M4

1

1

3

3

3

4

4

4

1

2

3

4

1

1

3

3

3

4

4

4

M1

M2

(c)

M3

M4

1 2

3

4

1

1

3

3 3

4

4

4

F
c

w
t

E
o
t
a∑
s
t
s
u
F

i
h
h
o
s
g
s
4
w
w
r
c

1

m
t
m
m
R
m

s
[
u
w
s

s
c
[
s
a
s
s
a

i
w
w

ig. 2. (a) An initial assignment, (b) an optimal reassignment requires transition
ost 4, and (c) an optimal reassignment for B = 3.

e present in Section 2 solves the problem optimally for arbitrary
ransition costs and arbitrary job-extension penalties.

xample 2. Fig. 2(a) presents an optimal SPT schedule of 12 jobs
n three machines. Assume that a forth machine is added, unit
ransition costs and no job-extension penalties. Fig. 2(a) presents
n optimal modified schedule, for which the total flow-time is

Cj = 55. The budget required to reach this schedule (or any other
chedule with

∑
Cj = 55) is 4. An important observation is that even

hough the number of jobs on the added machine is 3, and the initial
chedule is optimal, it is not possible to move to an optimal sched-
le with budget B = 3. An optimal solution for B = 3 is presented in
ig. 2(c). It has total flow-time 56.

The above examples demonstrate some of the challenges in solv-
ng our reoptimization problems, and the fact that simple natural
euristics do not solve the problem optimally, even if all migrations
ave unit transition cost. Note first that the natural greedy approach
f migrating the long jobs if the budget is low (as in Example 1(b)) is
ub-optimal. Another natural approach is prefix-SPT – use the bud-
et to maximize the prefix of the schedule that agrees with an SPT
chedule. This approach fails on Example 1 (jobs of lengthes 2 and

 will be migrated, resulting in
∑

Cj = 37). Moreover, prefix-SPT as
ell as suffix-SPT (maximize the suffix of the schedule that agrees
ith an SPT schedule) are not well-defined since the tie-breaking

ule, in case of multiple jobs having the same processing time, is
rucial – as demonstrated in Example 2.

.2. Related work

The ‘single-shot’ minimum total flow-time on identical
achines, P||∑Cj, can be solved in polynomial time by using

he shortest processing time (SPT) rule [30,9]. With unrelated
achines, that is, when the processing time of a job depends on the
achine on which it is processed, the resulting problem (denoted

||∑Cj), is solvable by a reduction to a minimum-weight complete
atching problem [7,18].
The work on reoptimization problems started with the analy-

is of dynamic graph problems (see e.g., [13,32] and a survey in
11]). These works focus on developing data structures supporting
pdate and query operations on graphs. Reoptimization algorithms
ere developed also for some classic problems on graphs, such as

hortest-path [24,23] and minimum spanning tree [1].
A different line of research deals with the computation of a good

olution for an NP-hard problem, given an optimal solution for a
lose instance. Among the problems studied in this setting are TSP,
4,6], Steiner Tree on weighted graphs [14] and Knapsack [2]. A
urvey of other research in this direction is given in [3]. In all of the
bove works, the goal is to compute an optimal (or approximate)
olution for the modified instance. The resulting solution may be
ignificantly different from the original one, since there is no cost
ssociated with the transition among solutions.
The paper [28] suggests the framework we adopt for this work,
n which the solution for the modified instance is evaluated also

ith respect to its difference from the initial solution. This frame-
ork is in use also in [27], to analyze algorithms for data placement
ormatics and Systems 4 (2014) 241–251 243

in storage area network. Considering both the quality of the solu-
tion and the transition cost from an initial solution can also be
seen as a special case of multi-objective optimization problems. In
these problems, there are several weight functions associated with
the input elements. The goal is to find a solution whose quality is
measured with respect to a combination of these weights (see e.g.,
[26,17]).

Other related work consider several graph algorithms that we
apply or adjust in this work. A matching M ⊆ E in a graph G = (V, E) is
set of edges such that each node in V appears in at most one edge in
M. A Bipartite graph G = (V, E) is a graph in which the vertex set V can
be divided into two disjoint subsets V1 and V2 such that E ⊆ V1 × V2.
A complete matching in a bipartite is a matching of size min(|V1|,
|V2|). A min-weight complete matching can be found using the
Hungarian method [21] or the Push-relabel algorithm [15]. Their
runtime is O(

√
|V ||E|(log(|V |2/|E|))(log |V |)) [20]. Another problem

whose solution we use as a black box, is the problem of finding a
min-cost max-flow in a network. Different approaches have been
proposed for solving the min-cost max-flow problem. The mini-
mum mean-cost cycle-canceling algorithm, developed by Goldberg
and Tarjan, is a strongly polynomial time algorithm for this problem
[15]. Its running time is O(|V|2|E|3 log |V|) [20].

1.3. Our results

In Section 2 we explore the problem of moving to a modified
optimal schedule using the minimal required budget. We present
an optimal algorithm that returns both an optimal schedule and
the minimal budget B required to reach an optimal schedule. The
algorithm is suitable for any modification and for arbitrary tran-
sition costs and job-extension penalties. The running time of the
algorithms is dominated by the time required to find a minimum-
weight complete matching in a complete bipartite graph with
O(nm) vertices.

The above optimal algorithm assume that the modification takes
place at time t = 0. In Section 3 we describe how and under which
conditions it can be extended to handle modifications at time t > 0.
We distinguish between systems in which currently processed jobs
can migrate or are obligated to complete their processing in the
current machine. We note that our results for change at t = 0 are
not necessarily static, as in many systems, the same workplan is
repeated periodically (daily, etc.), thus, every period can be con-
sidered as a schedule starting at time t = 0. A change in the fixed
periodic schedule is equivalent to a change at time t = 0.

Section 4 suggests simple algorithm for restricted instances. In
Section 4.2 we present an efficient algorithm for instances with unit
migration costs and no extension penalties. The time complexity of
this algorithm varies between O(n) (if the initial schedule is opti-
mal) and O(n log n) (for arbitrary initial schedule). In Section 4.3,
we characterize instances for which it is possible to determine the
minimal budget in constant time and to find an optimal reschedule
in linear-time.

In Section 5 we consider the problem of rescheduling with a
limited budget. The goal is to utilize the budget in the best pos-
sible way, that is, the modified schedule should have a low total
flow-time – the minimal possible among all schedules that can be
achieved using the given budget. Our results for this model assume
unit migration costs, thus, the budget B gives the maximal number
of allowed migrations. The job-extension penalties can be arbitrary.
We present an optimal algorithm for the case in which migrations

are allowed only to new machines.

We conclude, in Section 6, with a discussion and some direc-
tions for future work. We note that our results can be applied also
on a sequence of modifications. That is, the environment might

2 ng: Informatics and Systems 4 (2014) 241–251

c
e

2

fi
o
o
fi

o
t
c
c
e
t
j
e
u
t

i
H
o
r

l
n
p
c
r
o
r
i
c
d
c
m

P
i

a
l
g
t
e
2
f
s
c
a
a

A
i

1

Fig. 3. The bipartite graph for Algorithm 1. The figure corresponds to a configuration
44 G. Baram, T. Tamir / Sustainable Computi

hange more than once, and the algorithms are performed after
ach modification.

. Optimal modified schedule using minimal budget

In this section we consider the problem of moving to a modi-
ed optimal schedule with respect to the minimal total flow-time
bjective, using the minimal possible budget. We present an
ptimal algorithm for the most general case – with arbitrary modi-
cations, and arbitrary transition costs and job-extension penalties.

Let S0 be a given initial schedule. We do not assume that S0 is
ptimal nor that it has a specific structure or properties. Assume
hat at time t = 0, the environment is modified. Possible modifi-
ations include addition or removal of machines and/or jobs, and
hanges in jobs’ processing times. The price-list �i,i′ ,j specifies for
very job j assigned to machine i, how much it costs to migrate j
o machine i′. The job-extension penalty list ıi,i′ ,j specifies for every
ob j assigned to machine i, by how much its processing time is
xtended if migrated to machine i′. The goal is to find a new sched-
le, S, which is optimal with respect to the total flow-time, and has
he minimal transition cost from S0 among all optimal schedules.

We reduce the problem to a minimum weight complete match-
ng problem in a bipartite graph. This approach was suggested by
orn [18], and Bruno, Coffman and Sethi [7] for solving the problem
f minimum flow-time on unrelated machines (R||

∑
Cj). We first

eview their algorithm.
Reducing R||

∑
Cj to a min-weight complete-matching prob-

em: An instance of n jobs and m machines is given by an
 × m matrix, where for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, p′

i,j denotes the
rocessing time of job j if processed by machine i. The algorithm
onstructs a bipartite graph G′ = (V, E), where V = J ∪ U. The set J rep-
esents the set of n jobs (a single node per job). The set U consists
f mn nodes, qi,k, for i = 1, . . ., m and k = 1, . . ., n, where node qi,k
epresents the kth from last position on machine i. The edge-set E
ncludes an edge (vj, qi,k) for every node in J and every node in U (a
omplete bipartite graph). The edge-weight function w′ : E → N is
efined to be w′(vj, qi,k) = kp′i,j . As shown in [18,7], a min-weight
omplete matching in G′ corresponds to a schedule achieving mini-
um total flow-time. The proof is based on the following property:

roperty 2.1. If job j is the kth from the last job to run on machine i,
t contributes exactly k times p′

i,j to the sum of completion times.

We now return to our reoptimization problem. The following
lgorithm solves the problem optimally. The reoptimization prob-
em is reduced to a min-weight matching problem in a bipartite
raph G, that has the same set of vertices and edges as the bipar-
ite graph G′ described above. The graphs G and G′ differ in their
dge-weights. Note that edge weights in G (determined in Step
) consist of two components: a dominant component (with large
actor Z) corresponding to the contribution of a job assigned in a
pecific position to the total flow-time, and a minor component
orresponding to the associated transition cost. Both components
re combined to form a single weight. Fig. 3 illustrates the bipartite
nd the edges corresponding to a single job.

lgorithm 1. – An optimal algorithms for rescheduling using min-
mal budget

. Let �i,i′ ,j be a price list, i.e., it costs �i,i′ ,j to migrate job j from
machine i to machine i′. In particular, for all i, j, �i,i,j = 0.

Let ıi,i′ ,j be a job-extension penalty list, i.e., the processing time

of job j is extended to pj + ıi,i′ ,j when it is migrated from machine
i to machine i′. In particular, for all i, j, ıi,i,j = 0.

Let � = max
i,i′,j

�i,i′,j , and let Z be an integer larger than n�.
in which job j is assigned to machine i in S0, thus the weights of edges (vj, qi,k) do
not include a penalty component.

2. Construct a complete bipartite graph G = (V, E), where V =
{vj|∀1 ≤ j ≤ n} ∪ {qi,k|∀1 ≤ i ≤ m, 1 ≤ k ≤ n}. Set the edge weights
w : E → N as follows: For every job j assigned to i in S0,
• Let w(vj, qi,k) = Zkpj .
• For every i′ /= i, let w(vj, qi′,k) = Zk(pj + ıi,i′,j) + �i,i′,j .

3. Find a min-weight complete matching in G. Let H denote the set
of edges in this matching.

4. Return the schedule corresponding to H. That is, for every
(vj, qi′,k) ∈ H, assign j in the kth from last position on machine
i′. The minimum transition cost is

∑
(vj,qi′,k)∈H�i,i′,j , where i is the

machine on which j is assigned in S0.

Theorem 2.2. Algorithm 1 returns an optimal schedule using the
minimal possible transition cost from S0.

Proof. The proof consists of two claims, the first concerning the
optimality with respect to the total flow-time, and the second con-
cerning the optimality with respect to the transition cost.

Consider the modified instance and assume that transitions are
not associated with costs, but only with job-extensions. Due to
the job-extensions, the resulting problem is an R||∑Cj problem on
unrelated machines, where for any machine i′ and job j it holds
that p′

i′ ,j = pj + ıi,i′ ,j. Let G′ denote the bipartite graph built for solv-
ing the corresponding min-weight matching problem [18,7]. The
graph G′ has the same vertex-set and the same edge-set as the
graph G built in Algorithm 1. The graphs G and G′ differ in the edge
weights. As justified by Property 2.1, the weight w′(vj, qi′,k) of an
edge (vj, qi′,k) in G′, corresponding to a job j assigned to machine i
in S0 is k(pj + ıi,i′ ,j).

We say that a schedule induced by a set of edges H is feasible if
H is a complete matching and for every machine i, either no vertex
q belongs to H, or there exists an index n such that all vertices q
i,k i i,k
for 1 ≤ k ≤ ni belong to H. Informally, this implies that all the jobs
are assigned and the jobs are assigned to consequent slots on the
machines.

ng: Inf

C
s

P
m
t
G
A
t
w

1

∑

e

B

f
∑

e

w
∑

(

Z

�

f
i

C
t

P
s
t
c
t
∑

m
fl
∑

t
∑

G. Baram, T. Tamir / Sustainable Computi

laim 2.3. The set of edges H found in Step 3, induces a feasible
chedule S with minimum total flow-time.

roof. We show that the set of edges H is a minimum weight
atching also in G′ – and thus, as shown in [18,7], it corresponds

o a feasible schedule with minimum total flow-time. First, since
 and G′ differ only in edge weights, H is a legal matching in G′.
ssume by way of contradiction that H is not minimal with respect

o the weights w′ in G′, and that H* is a complete matching in G′

ith a lower weight. Since all the weights are integers,

 +
∑

e∈H∗
w′(e) ≤

∑

e∈H

w′(e). (1)

By definition of w and w′, the weight of H* in G is

∈H∗
w(e) = Z

∑

e∈H∗
w′(e) +

∑

e=(vj,qi,k)∈H∗
�i,i′,j.

y definition of Z, it holds that
∑

e=(vj,qi,k)∈H∗ �i,i′,j ≤ n� < Z. There-

ore,

∈H∗
w(e) < Z(1 +

∑

e∈H∗
w′(e)). (2)

Since H is a min-weight matching with respect to the weights
, it holds that

e∈H

w(e) ≤
∑

e∈H∗
w(e). (3)

Combining Eq. (1) (multiplied by Z),the definitions of w and w′,
3) and (2), we get the following contradiction:

(1 +
∑

e∈H∗
w′(e)) ≤ Z

∑

e∈H

w′(e) ≤
∑

e∈H

w(e) ≤
∑

e∈H∗
w(e)

< Z(1 +
∑

e∈H∗
w′(e)).

We conclude that the schedule S returned by the algorithm is a
easible schedule minimizing the total flow-time, and turn to show
t also minimizes the transition cost from S0.

laim 2.4. Among all schedules achieving minimum total flow-time,
he schedule S induced by H has the minimal transition cost from S0.

roof. Let H* be any perfect matching in G, corresponding to a
chedule, S*, achieving minimum total flow-time. We show that
he transition cost from S0 to S* is not lower than the transition
ost to S. We know that H is a min-weight complete matching in G,
herefore,

e∈H

w(e) ≤
∑

e∈H∗
w(e). (4)

Also, since both matchings induce schedules achieving mini-
um total flow-time and the weights w′ in G′ reflect the total

ow-time without the transition costs,

e∈H

w′(e) =
∑

e∈H∗
w′(e). (5)

The definition of w implies that for every matching Ĥ, it holds

hat

e∈Ĥ

w(e) = Z
∑

e∈Ĥ

w′(e) +
∑

e=(vj,qi,k)∈Ĥ

�i,i′,j, (6)
ormatics and Systems 4 (2014) 241–251 245

where the second term is exactly the transition cost from the initial
schedule to the schedule induced by Ĥ. Therefore, by applying Eq.
(6) on both H and H*, and using Eqs. (5) and (4), we get:

∑

e=(vj,qi,k)∈H∗
�i,i′,j −

∑

e=(vj,qi,k)∈H

�i,i′,j =
∑

e∈H∗
w(e) −

∑

e∈H

w(e)≥0.

We conclude that the transition cost to S* is not lower than the
transition cost to S. �

Theorem 2.2 follows from combining Claims 2.3 and 2.4. �
Remark: The above algorithm can be extended to an environ-

ment of unrelated machines by setting the edge-weights in the
bipartite G to be w(vj, qi′,k) = Zk(p′i′,j + ıi,i′,j) + �i,i′,j , where p′

i′ ,j is
the given processing time of job j on machine i′.

3. When the modification occurs at time t > 0

In this section we extend the algorithm to consider systems that
are modified after the processing has begun, that is, at time t > 0.
Denote by Jt the set of jobs processed at time t, and let, for every
machine i, � i ≥ 0 denote the time required to complete the job from
Jt processed at time t on machine i. As detailed in the introduc-
tion, in some systems, the processing of a job j ∈ Jt must complete
on its current machine. In other systems, currently processed jobs
can be migrated to another machine and restart their processing,
that is, after the migration, the job must be processed for pj + ıi,i′ ,j
time units, independent of its processing before the migration. We
present different algorithms for the two settings.

3.1. Restarts are not allowed

When restarts are not allowed and machines are removed, then
the problem is not well-defined for the jobs that are processed at
time t – since these jobs are obligated to complete their processing
on the to-be-removed machines. Thus, we assume that the mod-
ifications are machines’ addition and/or changes in the set or
processing times of jobs. The goal is to determine the schedule of
jobs whose processing did not begin before time t. An optimal algo-
rithm for this case is based on the observation that for the modified
schedule machine i is available starting at time � i. Algorithm 1 can
be generalized by setting the weights wnoR : E → R in the bipartite
graph (determined in Step 2) as follows: For every job j assigned to
i in S0,

• Let wnoR(vj, qi,k) = Z(kpj + �i).
• For every i′ /= i, let wnoR(vj, qi′,k) = Z(k(pj + ıi,i′,j) + �i′) + �i,i′,j .

The difference from the case in which the modification occurs
at time t = 0 is the fact that machine i is available only from time � i.
Thus, if job j is the kth from last job to run on machine i, it contributes
exactly � i plus k times its processing time to the sum of comple-
tion times. As in Algorithm 1, the weights consist of a dominant
component (with large factor Z) ensuring that schedule achieves
minimum total flow-time, and a minor component ensuring the
minimal possible transition cost.

The availability time of machine i is added to the dominant com-
ponent, as it affect the flow-time of the jobs assigned to it. The proof
of the following theorem follows directly the proof of Theorem 2.2.
Theorem 3.1. Algorithm 1 with weights wnoR returns an optimal
schedule using the minimal possible transition cost from S0, when
restarts are not allowed.

2 ng: Inf

3

p
f
a
n
c
f
b

t
a
t
j

R

w

•

•

•

i
fi

L
a
s

P
j
a
p
o
a
s
j
a
b
M
o
i
b

c
T
(
fl
o
t
a
o

a
t
i
t
t

l

46 G. Baram, T. Tamir / Sustainable Computi

.2. Restarts are allowed

When restarts are allowed, a job j ∈ Jt might complete its
rocessing on its current machine, but can also migrate to a dif-
erent machine. If migrated, the corresponding transition cost is
pplied and the job must restart. We assume that preemptions are
ot allowed.2 Another possibility for a job j ∈ Jt is to remain on its
urrent machine, but delay its processing – letting jobs migrating
rom other machines precedes it. In this case, the job must restart,
ut no transition cost is applied, as no migration is performed.

Recall that for every machine i, � i ≥ 0 denotes the time required
o complete the job from Jt processed at time t on machine i. Our
lgorithm assumes that the initial schedule, S0, is optimal and that
he modification includes machines’ addition. We also assume no
ob-extension penalties.

Algorithm 1 can be generalized by setting the weights wR : E →
 in the bipartite graph (determined in Step 2) in the following
ay:

For every job j ∈ Jt that is currently processed on machine i let
wR(vj, qi,k) = Zk�i.
For every job j /∈ Jt that is assigned to machine i, let wR(vj, qi,k) =
Zkpj .
For every i′ /= i, let wR(vj, qi′,k) = Zkpj + �i,i′,j .

Note that the processing time of the currently processed job j on
 is assumed to be � j even though j might not be assigned to be the
rst job on machine i. The next lemma justifies these assumptions.

emma 3.2. For every machine i, let j ∈ Jt be the job processed by Mi
t time t, then there is an optimal schedule in which j is not processed
econd or later on machine i.

roof. Assume that there exists an optimal reschedule S* in which
 is scheduled second (or later) on the machine M1 on which it was
ssigned in the initial configuration. Recall that �1 is the remaining
rocessing time of j on M1. Since in any optimal schedule, the jobs
n every machine are sorted from shorter to longer, there must be
t least one job, j′, not longer than �1, before j. If pj′ = �1 then by
wapping j and j′, the value of the total flow-time is unchanged and

 is assigned first as required. Thus, we assume that pj′ < �1. Since we
ssume that the initial schedule is SPT, and j was processed at time t
y M1, the job j′ also belongs to Jt. Given that two jobs from Jt are on
1 in S*, by the pigeonhole-principle, there must be a machine, M2,

n which no job from Jt is assigned in S*. Let j* be the first job on M2
n S* (see Fig. 4(a)). Since j* /∈ Jt it must be that pj∗≥�1 > pj′. Denote
y k1 and k2 the number of jobs on M1 and M2 in S*, respectively.

If k1 > k2, move j′ to be first on machine M2 (see Fig. 4(b)). The
ontribution of j′ to the total flow-time before the migration is k1pj′ .
he contribution of j′ to the total flow-time after the migration is
k2 + 1)pj′ . For any k2 < k1, this migration does not increase the total
ow-time. Moreover, it might save the transition cost of j′ (if its
riginal machine is M2), thus, the resulting schedule is either better
han S*, contradicting its optimality, or has the same total flow-time
nd transition cost as S*, and it satisfies the requirement that j is first
n M1.

If k1 ≤ k2, move j and j* to be the first and second jobs on M1,
nd move j′ to be the first job on M2 (see Fig. 4(c)). The contribu-
ion of these three jobs to the total flow-time before the change

s k1pj′ + (k1 − 1)�1 + k2pj∗ . The contribution of these three jobs to
he total flow-time after the change is k1�1 + (k1 − 1)pj∗ + k2pj′. The
otal flow-time reduced by (pj∗ − pj′)(k2 − k1) + pj∗ − �1, which is

2 Enabling preemptions affects all the jobs of the instance, thus causing the prob-
em to be intractable [29].
ormatics and Systems 4 (2014) 241–251

positive for any pj∗≥�1 > pj′ and k2 ≥ k1. Thus, the resulting sched-
ule has lower total flow-time, contradicting the fact that S* is
optimal. �

We conclude that Algorithm 1 with the weights wR solves opti-
mally the reoptimaization problem with modifications at time t > 0
and restarts allowed. Note that the output of the algorithm is an
SPT schedule, therefore, the algorithm can also handle a sequence
of modifications.

4. Efficient algorithms for identical migration costs

In this section we consider systems with identical migration
costs and no job-extension penalties, that is, for all i, i′, j, it holds
that �i,i′ ,j = 1 and ıi,i′ ,j = 0. We present efficient algorithms for finding
an optimal modified schedule using the minimal possible budget.
The algorithms are based on some properties of the SPT algorithm
for P||∑Cj. For completeness, we first review this algorithm and
highlight some properties of SPT schedules.

4.1. Review and properties of SPT algorithm

SPT algorithm [30,9] produces a schedule achieving minimum
total flow-time of n jobs on m identical machines. We describe a
specific application of this algorithm below. Initially, dummy jobs
of length 0 are added such that the total number of jobs is a multiple
of m. Specifically, if n is not a multiple of m, then m − (nmodm)
jobs of length zero are added to the instance. The dummy jobs can
be scheduled on arbitrary machines and (when rescheduled) their
migration cost is 0. Given that n is a multiple of m, SPT algorithm
proceeds as follows: First, sort the jobs in non-decreasing order of
processing time (break ties arbitrarily). Next, partition the jobs into
n/m rounds of m jobs each. The rth round consists of the jobs indexed
(r − 1)m + 1, . . ., rm in the sorted list. Schedule on each machine one
job from the first round, followed by one job from the second round,
etc.

Throughout this work we use the following known properties
of SPT schedules:

The round property: the internal assignment of jobs from a par-
ticular round to the machines does not affect the total flow time,
that is, any schedule in which the m jobs of round r are assigned on
the r-th slots on the m machines is optimal.

The load property: in any optimal schedule the number of non-
dummy jobs on any machine is either �n/m� or n/m�.

4.2. Efficient optimal algorithm

The first algorithm we present can be applied for addition
or removal of machines and/or jobs, as well as changes in jobs’
processing times. Let L be the set of job-lengths in the modified
instance. Recall that dummy jobs of length 0 are added such that
the total number of jobs is a multiple of m. The set L includes at
most n distinct values. By the round-property of SPT schedules, an
optimal schedule can be characterized by the numbers n�,r, for all
� ∈ L and 1 ≤ r ≤ (n/m), where n�,r is the number of jobs of length �
in round r, in any optimal schedule. Moreover, the problem of find-
ing an optimal schedule using minimum transition cost reduces to
the problem of finding a schedule obeying the optimal n�,r values
with a minimal number of migrations from the initial schedule. The
following is an overview of our optimal algorithm:

Algorithm 2. – An efficient optimal algorithm for rescheduling
with identical migration costs.
1. For every length � ∈ L and round 1 ≤ r ≤ (n/m), calculate n�,r, the
number of jobs of length � in round r, in any optimal modified
schedule.

G. Baram, T. Tamir / Sustainable Computing: Informatics and Systems 4 (2014) 241–251 247

j’

j*

M1

M2

j

j’ j*

M1

M2

(b)

j

j’

jM1

M2

j

chedu

2

3

4

j
m
l
t
i

i
m
a
m
s
c
(

r
s
t
n
M

F
i

r
r

a
r
r

L
r

P
a

(a)

Fig. 4. (a) The assumed schedule, (b) A better s

. Partition L into two sets of job lengths: Let L1 ⊆ L be the set of
lengths such that � ∈ L1 if and only if n�,r > 0 for a single round r.
Let L2 = L \ L1 be the set of lengths such that � ∈ L2 if and only if
n�,r > 0 for more than a single round.

. For every round 1 ≤ r ≤ (n/m), schedule a maximal number of
non-migrating jobs in round r. First, assign jobs having lengths in
L1, then in L2. When assigning jobs from L2, give higher priority
to short jobs.

. Schedule migrating jobs.

The idea is to assign first a maximal number of non-migrating
obs, and then assign the migrating jobs. When assigning the non-

igrating jobs, we first assign the more restricted jobs – having
engths in L1, and must be assigned in a specific round, and then
he more flexible jobs whose lengths are in L2 (and can be assigned
n more than one specific round).

Denote by S the schedule built by the algorithm. Steps (3–4) are
mplemented as follows: Denote by Si,r the slot in the rth round on

achine i. Initially, for all 1 ≤ i ≤ m, 1 ≤ r ≤ (n/m) it holds that Si,r is
vailable (=∅). During Steps (3–4) some slots are assigned to non-
igrating jobs. Whenever a job j of length � is assigned to the r-th

lot on machine i, the corresponding variable Si,r is set to j, and the
orresponding counter of n�,r is reduced by one. Specifically, Steps
3–4) are implemented as follows:

Step 3: Step 3 consists of n/m iterations. In iteration r, the algo-
ithm assigns non-migrating jobs into slots of round r. Consider a
lot Si,r. Let ForFree(i, r) denote the set of jobs that can be assigned
o Si,r with no migration. Formally, j ∈ ForFree(i, r) if and only if (i)
pj,r > 0, (ii) j is assigned to Mi in S0, and (iii) j was not assigned to
i in earlier rounds.

In Step 3, if possible, the algorithm assigns to Si,r a job from For-
ree(i, r) giving priority to lengths in L1, and then to shorter lengths
n L2. Formally,

For r = 1 to n/m
For i = 1 to m

Calculate ForFree(i, r).
If ForFree(i, r) /= ∅

If there exists j ∈ ForFree(i, r) such that pj ∈ L1. Set Si,r = j, npj,r = npj,r − 1.
Else, let j be the shortest job in ForFree(i, r) such that pj ∈ L2.

Set Si,r = j, npj,r = npj,r − 1.

Step 4: Step 4 consists of n/m iterations. In iteration r, the algo-
ithm assigns, with migrations, jobs to slots Si,r for which ForFree(i,
) =∅. Formally,

While there exist �, r such that n�,r > 0,
Assign any unassigned job j of length � to any machine i s.t. Si,r =∅.

Set Si,r = j, n�,r = n�,r − 1.

The number of migrations is the number of non-dummy jobs
ssigned in Step 4. This number is the minimal budget required to
each an optimal schedule. We prove the optimality of the algo-
ithm by combining two lemmas.
emma 4.1. The algorithm produces an optimal schedule with
espect to the total flow-time.

roof. The schedule S satisfies the n�,r values calculated by SPT
lgorithm, therefore it must be optimal. Since these values were
(c)

le if k1 > k2, and (c) a better schedule if k1 ≤ k2.

calculated according to the amounts of jobs in the modified
instance, all jobs are assigned, that is, in Step 4, while there exist �,
r such that n�,r > 0, it is guaranteed that there is an available empty
slot for a job of length � in round r. �

Lemma 4.2. Every schedule minimizing the total flow-time requires
at least the same number of migrations as the number of migrations
applied by the algorithm.

Proof. We prove the following greedy choice property: for every
round r there exists an optimal solution minimizing the total number
of migrations, in which the non-migrating jobs assigned to round r
are identical to those selected by the algorithm. The following simple
observation will be used to analyze the assignment of jobs having
lengths in L2.

Observation 4.3. For every round r, there are at most two lengths
�1, � 2 ∈ L2 such that n�1,r > 0 and n�2,r > 0.

Proof. By definition, jobs of lengths in L2 span across more than
one round in any optimal schedule. Another known property of
SPT schedules is that all job lengths in round r are not shorter than
job lengths in round r − 1 and not longer than job lengths in round
r + 1. It is not possible to have three different lengths, all spanning
over round r and an additional round, since in order to preserve the
above SPT property, jobs of the middle length, must all be assigned
to round r. �

We prove the greedy choice property for round r: Assume that an
optimal schedule agrees with the algorithm in rounds earlier than
r, and consider the assignment to round r. For every machine i, if
ForFree(i, r) =∅ then this is valid also for the optimal assignment, and
a migration from another machine to Si,r is inevitable. If ForFree(i, r)
includes at least one job then we use exchange argument to show
that any selection of job to Si,r that is different from the algorithm’s
choice can be changed to the algorithm’s choice without hurting
the total number of non-migrating jobs. Let j ∈ ForFree(i, r) be the
job assigned by the algorithm to Si,r. Let j′ /= j be the job assigned
in the optimal schedule to Si,r. If j′ /∈ ForFree(i, r), then by switching
j and j′, we can only reduce the number of non-migrating jobs. If
j′ ∈ ForFree(i, r), we distinguish between two cases:

1 pj ∈ L1. In this case, j must be assigned to round r, and assigning
it to Si,r is the only way to assign it for free. By switching the
assignment of j′ and j in the optimal assignment, we avoid the
migration of j, and cause a migration to j′, thus, the total number
of migrations does not increase.

2 pj ∈ L2. Since the algorithm gives priority to jobs whose lengths
are in L1, it must be that all job lengths in ForFree(i, r) are in L2 and
in particular, pj′ ∈ L2. By Observation 4.3, pj, pj

′ are the only lengths
of jobs in ForFree(i, r). Among lengths in L2, the algorithm gives
priority to shorter jobs, therefore, pj < pj′ . Moreover, r is the last
round in which jobs of length pj will be assigned, as otherwise,
the SPT order is not preserved (given that jobs of length pj′ are
assigned on both r and r + 1). Therefore, assigning j to Si,r is the

only way to assign it for free. By switching the assignment of j′

and j in the optimal assignment, we avoid the migration of j, and
cause a migration to j′, thus, the total number of migrations does
not increase.

248 G. Baram, T. Tamir / Sustainable Computing: Informatics and Systems 4 (2014) 241–251

(a) S0 (b)

1 1

3

M1

M2

M3

M1

M2

M3

M4

1

1

0

2

2

22

0

1 1

3

1 2

2

2

1 23

3

F
a

t
n
a

i
t
f
n
2
i
t
r
o
a
j
m
t

o
b
t
o
s
p
a
L
a
r

O

u
i
m
r
a
M
t
w

4

o
o
c
t
o
s
b

21 43 65 87 9 41

2

7

85

63 9

(a) (b)

Fig. 6. (a) The initial schedule (b) An optimal modified schedule when m′=2m0.
Every block represents m0 jobs.

21 43 5 41

2

5

3

53

(a) (b)
ig. 5. (a) An initial assignment, (b) an optimal reassignment (with dummy jobs)
chieved with transition cost 2. Different fill-patterns denote different rounds.

We conclude that any optimal assignment can be modified such
hat it agrees with the algorithm’s choice, without hurting the
umber of migrations. Thus, the algorithm produces an optimal
ssignment. �

Example: Consider the schedule S0 on three machines, given
n Fig. 5(a). Assume that a forth machine is added. We first add
wo dummy jobs of length 0 to have n = 12, which is a multiple of
our. In every optimal schedule on four machines we have n0,1 = 2,
1,1 = 2, n1,2 = 2, n2,2 = 2, n2,3 = 2, n3,3 = 2. Thus, L1 = {3} and L2 = {1,
}. The optimal reassignment produced by the algorithm is given

n Fig. 5(b). The algorithm assigns first the non-migrating jobs: In
he first round, two jobs of length 1 on M1 and M2; in the second
ound, two jobs of length 1 on M1 and M3, and one job of length 2
n M2. In the third round two jobs of length 2 are assigned on M1
nd M3, and one job of length 3 on M2. Finally, the two remaining
obs (of lengthes 2 and 3) are assigned on M4 – these are the only

igrating jobs. The resulting schedule is optimal and the minimum
ransition cost is 2.

Time complexity analysis: Algorithm 2 consists of four steps. In
rder to calculate the n�,r values in Step 1, the jobs should be sorted
y processing times. Such a sorting takes O(n log n) time. The parti-
ion of job lengths into L1, L2 in Step 2 is clearly linear. Step 3 iterates
n the rounds and in each round assigns jobs using the already
orted list. The ForFree structure can be implemented using a list of
ointers. Since ForFree jobs are assigned in a non-decreasing order
nd since, by Observation 4.3, at most two different lengthes from
2 are considered in each round, Step 3 takes O(m) for each round
nd a total of O(m(n/m)) = O(n). In Step 4, the algorithm assigns the
emaining jobs in time O(n).

We conclude that the time complexity of the algorithm is
(n log n).

We note that the sorting in the first step can be performed faster
nder various assumptions: If the initial schedule is optimal, that

s, in SPT order, and the modification does not include jobs’ length
odification, then the algorithm only needs to sort the jobs of each

ound in S0 separately, and concatenate the resulting lists. As there
re m0 jobs in each round we get an O(n log m0) time algorithm.
oreover, if in the initial SPT schedule the jobs are assigned sequen-

ially on the machines, or if m0 is a constant, then Step 1, and the
hole algorithm, take O(n) time.

.3. Linear-time algorithms for some special cases

Algorithm 2 uses the minimal budget required to achieve an
ptimal schedule assuming unit migration cost. For several cases
f m0, m, and when the original schedule is optimal (SPT) we
an calculate an optimal solution in linear time and determine

he required budget in constant time. We consider the two cases
f adding or removing machines, where in each case we explore
everal options and show the analysis of the minimal budget
ound. Recall that M0 denotes the initial set of machines and
Fig. 7. (a) The initial schedule (b) An optimal modified schedule when m0 < m′

m0 =
∣∣M0

∣∣, M denotes the modified set of machines, and m =
∣∣M

∣∣.
Let M′ denote the set of added / removed machines, and m′ =

∣∣M′
∣∣.

Thus, in machines’ addition, m′ = m − m0 and in machines’ removal,
m′ = m0 − m. Denote by S0, S the original and the modified schedule,
respectively. Let R0r, Rr denote the rth round in the initial and in the
modified schedule, respectively.

4.3.1. Adding machines
The case m0 ≤ m′: we show that the optimal schedule for this

case can be achieved using only migrations to the new machines
(there are no internal migrations). Specifically, we show that there
exists an optimal schedule in which no job scheduled on M0
migrates to a different machine in M0. Thus, the minimal budget
is the minimum number of jobs on the new machines in an opti-
mal schedule, which is m′� n/m0 + m′ �. As S0 is optimal (SPT), there
exists an optimal schedule S where for all r, each of the jobs of R0r is
scheduled in S in round that is not higher than any round on which
a job from R0r+1 is assigned.

If m′ is a multiple of m0, that is, for some integer x, m′ = xm0,
there exists an optimal schedule where every x + 1 rounds of S0
unite to one round of S. Therefore, in every round Rr it is possible
to assign m jobs on their original machines (see Fig. 6 for x = 2).
Specifically, assigning jobs from the first round of the x + 1 rounds on
their original machines in S. Clearly, such an assignment is optimal
and as all machines m ∈ M0 are assigned with non migrating jobs,
there is no optimal schedule with less migrations.

If m0 ≤ m′, and m′ is not a multiple of m0, it might be that jobs
from one round in S0 will end up in different rounds in S. Still, we
show that there exists an optimal schedule S achieved using no
internal migrations. Thus, a budget of m′· � n/m0 + m′ � is sufficient.
Since m0 < m′, the number of jobs in every round in S is more than
2m0, therefore, every round of S includes at least one whole round of
S0. This implies that in every round of S it is possible to assign m jobs
on their original machines. Clearly, such assignment is optimal and

as all machines m ∈ M0 are assigned with non migrating jobs, there
is no optimal schedule with less migrations. Such an assignment is
demonstrated in Fig. 7. The second round includes jobs from R03,

G. Baram, T. Tamir / Sustainable Computing: Inf

1 2 3

4 5 6

M1

M2

1

2

3

4

5

6

M1

M2

)b()a(

M3

Fig. 8. (a) An initial non optimal assignment, (b) M3 is added, an optimal reassign-
ment requires 4 migrations.

3A
3B
3C

2A
2B
2C

2A
2B
2C

2A
2B
2C

3A
3B
3C

3A
3B
3C

2A1A

1B

3A

3B2B

2C1C 3C

1A
1B
1C

1A
1B
1C

1A
1B
1C

(a) (b)

Fig. 9. (a) The initial schedule (b) An optimal modified schedule when m′=2m.

M1

M2

(a)

M3

M4

1

2

43

3

3 4

4

5

3 5

5

M1

M2

(b)

M3

1

2 4

3

3

3

4

4

5

3 5

5

F
m

R
t

t
t
b

s
o

4

m
i
r
m

o
t
o
S
t
f
a
w
m

m
i
r

ig. 10. (a) An initial optimal assignment, (b) M4 is removed, an optimal reassign-
ent requires 4 migrations.

04, R05 where R04 is fully included in R2. It is possible to assign all
he jobs in R04 on their original machines.

The case m0 > m′: In this case, as demonstrated in Fig. 2 in
he introduction, it might be inevitable to have internal migra-
ions within M0. We cannot bound the minimal required budget
y m′· � n/m0 + m′ �, and Algorithm 2 should be applied.

Finally, we note that as demonstrated in Fig. 8, if the initial
chedule S0 is not optimal or if the modification includes changes
f job lengths, the bound is not valid even in the simplest case m′=1.

.3.2. Removing machines
When m′ is a multiple of m: Assume that for some integer x,

 = m′/x. We show that the minimal budget required for achiev-
ng an optimal schedule in this case is the number of jobs on the
emoved machines. Specifically, we show that there exists an opti-
al schedule in which no job from M0 \ M′ migrates.
As m′ = xm, there exists an optimal schedule where every round

f S0 forms x + 1 subsequent rounds of S. For all r, the m jobs of R0r
hat are assigned on machines that are not removed might spread
n x + 1 different rounds. Still, according to the round-property of
PT schedules, the assignment of these jobs is flexible, and each of
hese jobs can remain on its machine (see Fig. 9 for x = 2, the jobs
orming the set 1A might spread along three rounds). Clearly, such
n assignment is optimal and, as all machines m ∈ M0 are assigned
ith non migrating jobs, there is no optimal schedule with less
igrations.

′
When (m modm) /= 0: In this case internal migrations within M
ight be inevitable. For m > m′, consider the example in Fig. 10. The

nitial schedule on m0 = 4 machines is optimal. Assume that M4 is
emoved. Any optional modified schedule must satisfy n34 = 3, thus
ormatics and Systems 4 (2014) 241–251 249

one internal migration is inevitable – a job of length 4 must leave
M3.

For m ≤ m′, consider the example in Fig. 11(a) and (b). The initial
schedule on m0 = 5 machines is optimal. Assume that 3 machines,
M3, M4, M5 are removed. Any optional modified schedule must sat-
isfy n32 = 1 and n22 = 1, thus one internal migration is inevitable –
one job must leave M1.

Thus, when (m′modm) /= 0 for both m < m′ and m > m′, internal
migrations might be inevitable and a budget of (m0− m′) · � n/m0 �
might not be sufficient.

Finally, we note that as demonstrated in Fig. 11(c) and (d), if
the initial schedule S0 is not optimal or if the modification includes
changes of job lengths, the bound is not valid even in the simplest
case m′=1.

5. Rescheduling with a limited budget – unit migration
costs

In this section we consider the rescheduling problem assuming a
limited budget. Naturally, the goal is to utilize the budget in the best
possible way, that is, the modified schedule should have a low total
flow-time – the minimal possible among all schedules that can be
achieved using the given budget. We assume unit migration costs,
that is, �i,i′ ,j = 1, independent of the job j and the involved machines.
Thus, the budget B gives the maximal number of allowed migra-
tions. Clearly, the problem is of interest only if B < n, as otherwise
an optimal schedule can be found by ignoring the migration costs.
We present an optimal algorithm for the case when the system’s
modification consists of machines addition and the only allowed
migrations are to the new machines. This scenario arises in practice
when the system is upgraded with new machines that are ready to
receive tasks, while the old machines are not capable to accept new
tasks.

The job-extension penalties can be arbitrary. That is, for all i, i′,
j, ıi,i′ ,j ≥ 0 gives the extension of job j if migrated from machine i to
machine i′.

The algorithm is based on a reduction to a min-cost max-flow
problem. An illustration of the flow network is given in Fig. 12. Each
edge is labeled by its capacity and the cost of one flow unit.

An overview of the flow network: The set of nodes vi,k for
1 ≤ i ≤ m0, 1 ≤ k ≤ n correspond to positions on the initial machines,
where vi,k denotes the kth-from-last position on machine i. Sim-
ilarly, the set of nodes qi′ ,k for 1 ≤ i′ ≤ m′, 1 ≤ k ≤ B correspond to
positions on the added machines. All the q-nodes are connected to
node d. The capacity of the edge (d, t) is the budget B. This limited
capacity guarantees that the total number of slots occupied on the
new machines will not exceed B. The set of nodes 1 ≤ j ≤ n corre-
spond to the jobs. Every job j that is assigned to machine i in S0
is connected to the nodes corresponding to positions on machine i
and to all the q-nodes. The capacities of all edges except for (d, t) are
1. The cost of an edge connecting job j to a node corresponding to a
kth from last position on the machine i on which it is assigned is kpj,
while the cost of an edge connecting job j to a node corresponding
to a kth from last position on a new machine i′ is k(pj + ıi,i′ ,j). All
other edges have cost 0.

Theorem 5.1. A minimum-cost maximum-flow (of value n) in G
corresponds to an optimal schedule without exceeding the budget B.

Proof. First, note that every valid schedule corresponds to a
maximum-flow in G. On the other hand, not every maximum-flow
in G corresponds to a schedule, since a job might be assigned to
the kth from last position in some machine, while less than k jobs

are assigned to that machine. However, such a maximum-flow is
clearly not of minimal cost – a better matching can be obtained by
shifting the k′ < k jobs assigned to that machine into the k′ last slots.
Therefore, a schedule of minimum total flow-time corresponds to

250 G. Baram, T. Tamir / Sustainable Computing: Informatics and Systems 4 (2014) 241–251

M 1

M 2

(a)

M 3

M 4

1

2 3

4

M 5

1 4

1 4

1 4

M 1

M 2

(b)

1

2

3 4

1 41

41

4 1

2

3

4

5

6

M1

M2

1 2

3 4

5 6

M 1

M 2

(d)(c)

M 3

Fig. 11. (a) An initial optimal assignment, (b) M3, M4, M5 are removed, an optimal reassignment requires 7 migrations. (C) An initial non-optimal assignment, (d) M3 is
removed, an optimal reassignment requires 4

 resch

a
B
i
a
s

t
d
a
i
s
fi
a

6

n
s
v
t
r
p
l

1

Fig. 12. The flow network built for the

 minimum-cost maximum-flow in G. As the capacity of (d, t) is
, while all other edges’ capacity is 1, at most B q-nodes have

ncoming flow. These nodes correspond to migrating jobs. Thus,
 minimum-cost maximum-flow in G corresponds to an optimal
chedule without exceeding the budget B. �

This algorithm can be extended for the case in which the sys-
ems’ modification occurs at time t > 0 – similar to the extensions
escribed in Section 3. If restarts are allowed, then our extension
ssumes that every currently processed job is the shortest job on
ts machine (which is true if the initial schedule is optimal, or if the
chedule is a result of our algorithm – even on a sequence of modi-
cations). If restarts are not allowed then our extension is valid for
ny initial schedule.

. Conclusions and future work

We studied reoptimization problems arising in production plan-
ing, in which the goal is to combine the objective of finding a
chedule with low total flow-time, with the goal of efficiently con-
erting a given initial schedule to the modified one. We presented
he first positive results in this framework. We presented algo-
ithms for finding an optimal schedule achieved using the minimal
ossible transition cost, and algorithms for optimal utilization of a

imited number of migrations.
Several interesting important problems remain open:
 Our algorithm for the problem of achieving the best pos-
sible reschedule using limited budget (Section 5) assumes
uniform transition costs and no internal migrations. For arbitrary
eduling with limited budget problem.

instances the complexity status of the problem should be studied.
Hardness results or efficient algorithms should be developed.

2 Identify the range of budget B for which it is guaranteed
that an optimal reschedule can be achieved using no internal
migrations. It is easy to see that this range is included in
m′ < B ≤ m′ · (n/m0 + m′).

3 Another open research direction is to consider different objec-
tive functions. In particular, minimizing the makespan of the
schedule, given by the last completion time of some job.
Since the problem is NP-hard, the reoptimization problem
is clearly also NP-hard. The goal is to develop an algorithm
for the reoptimization problem whose approximation-ratio is
similar to the best approximation-ratio known for the origi-
nal problem. For the minimum total-flow problem, we were
able to reduce the reoptimization problem on identical par-
allel machines to the same problem on unrelated machines
(R||

∑
Cj). It seems that a similar reduction can be applied also

for the minimum makespan problem. The best approximation
ratio for the resulting problem (R||Cmax) is 2 − 1/m, and it is
based on solving an LP problem [31]. We believe that a sim-
pler greedy algorithm tailored for the reoptimization problem
can have a similar performance. Note that the order of the jobs
assigned to a specific machine is not important. Thus, some of
the challenges involved in scheduling remainders of currently
processed jobs as first on their machines are not relevant in this
problem.
References

[1] G. Amato, G. Cattaneo, G.F. Italiano, Experimental analysis of dynamic mini-
mum spanning tree algorithms, in: Proceedings of the 8th SODA, 1997.

http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0005

ng: Inf

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

graph theory. Prior to her PhD studies, she was a member
of the performance enhancement group of Intel in Haifa.
G. Baram, T. Tamir / Sustainable Computi

[2] C. Archetti, L. Bertazzi, M.G. Speranza, Reoptimizing the 0–1 knapsack problem,
Discrete Appl. Math. 158 (17) (2010) 1879–1887.

[3] G. Ausiello, V. Bonifaci, B. Escoffier, Complexity and approximation in reopti-
mization, in: B. Cooper, A. Sorbi (Eds.), Computability in Context: Computation
and Logic in the Real World, Imperial College Press/World Scientific, 2011.

[4] G. Ausiello, B. Escoffier, J. Monnot, V.T. Paschos, Reoptimization of minimum
and maximum traveling salesmans tours, J. Discrete Algorithms 7 (4) (2009)
453–463.

[5] J. Berlinskaa, M. Drozdowskib, Scheduling divisible MapReduce computations,
J. Parallel Distrib. Comput. 71 (3) (2011) 450–459.

[6] H.J. Böckenhauer, L. Forlizzi, J. Hromkovič, J. Kneis, J. Kupke, G. Proietti, P. Wid-
mayer, On the approximability of TSP on local modifications of optimally solved
instances, Algorithmic Oper. Res. 2 (2) (2007) 83–93.

[7] J.L. Bruno, E.G. Coffman, R. Sethi, Scheduling independent tasks to reduce mean
finishing time, Commun. ACM 17 (1974) 382–387.

[8] A.D. Birrell, B.J. Nelson, Implementing remote procedure calls, ACM Trans. Com-
put. Syst. 2 (1984) 39–59.

[9] R.W. Conway, W.L. Maxwell, L.W. Miller, Theory of Scheduling, Addison-Wesley
(1967).

10] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield, Live
migration of virtual machines, in: The 2nd Symposium on Networked Systems
Design and Implementation (NSDI), 2005.

11] C. Demetrescu, I. Finocchi, G.F. Italiano, Dynamic graph algorithms, in: J. Yellen,
J.L. Gross (Eds.), Handbook of Graph Theory, CRC Press Series, in Discrete Math
and Its Applications, 2003.

12] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clus-
ters, in: Proceedings of the 6th Symposium on Operating System Design and
Implementation (OSDI), 2004, pp. 137–150.

13] D. Eppstein, Z. Galil, G.F. Italiano, Dynamic graph algorithms, in: M.J. Atallah
(Ed.), Algorithms and Theoretical Computing Handbook, CRC Press, 1999.

14] B. Escoffier, M. Milanič, V.T. Paschos, Simple and Fast Reoptimizations for the
Steiner Tree Problem. DIMACS Technical Report 2007-01, 2007.

15] A.V. Goldberg, R.E. Tarjan, Finding minimum-cost circulations by canceling
negative cycles, J. Assoc. Comput. Mach. 36 (4) (1989) 873–886.

16] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and
approximation in deterministic sequencing and scheduling: a survey, Ann.
Discrete Math. 5 (1979) 287–326.

17] F. Grandoni, R. Zenklusen, Optimization with more than one budget, in:
Proceedings of the ESA, 2010.

18] W. Horn, Minimizing average flow-time with parallel machines, Oper. Res. 21
(1973) 846–847.

19] S. Hacking, B. Hudzia, Improving the live migration process of large enterprise
applications, in: The 3rd International Workshop on Virtualization Technolo-
gies in Distributed Computing (VTDC), 2009.

20] J.R. Kenney, Solving unweighted and weighted bipartite matching problems in

theory and practice (Ph.D. thesis), Stanford University, 1995.

21] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Res.
Logist. Q. 2 (1955) 83–97.

22] D. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, 2nd ed.,
Elsevier, 2010.
ormatics and Systems 4 (2014) 241–251 251

23] E. Nardelli, G. Proietti, P. Widmayer, Swapping a failing edge of a single source
shortest paths tree is good and fast, Algorithmica 35 (2003) 56–74.

24] S. Pallottino, M.G. Scutella, A new algorithm for reoptimizing shortest paths
when the arc costs change, Oper. Res. Lett. 31 (2003) 149–160.

25] Parallels Virtuozzo, http://www.parallels.com/products/pvc
26] R. Ravi, M.X. Goemans, The constrained minimum spanning tree problem, in:

5th Workshop on Algorithm Theory, 1996, pp. 66–75.
27] H. Shachnai, G. Tamir, T. Tamir, Minimal cost reconfiguration of data placement

in storage area network, Theor. Comput. Sci. 460 (2012) 42–53.
28] H. Shachnai, G. Tamir, T. Tamir, A theory and algorithms for combinatorial

reoptimization, in: Proceedings of the 10th LATIN, 2012.
29] R.A. Sitters, Two NP-hardness results for preemptive minsum scheduling

of unrelated parallel machines, in: Proceedings of the 8th IPCO, 2001,
pp. 396–405.

30] W.E. Smith, Various optimizers for single-stage production, Naval Res. Logist.
Q. 3 (1956) 59–66.

31] E.V. Shchepin, N. Vakhania, An optimal rounding gives a better approx-
imation for scheduling unrelated machines, Oper. Res. Lett. 33 (2005)
127–133.

32] M. Thorup, D.R. Karger, Dynamic graph algorithms with applications, in:
Proceedings of the 7th SWAT, 2000.

33] Xen Project, http://www.xenproject.org/

Guy Baram completed his MSc in the school of Com-
puter Science at the Interdisciplinary Center (IDC) Israel,
in 2013.

Tami Tamir joined the school of Computer Science at
the Interdisciplinary Center (IDC) Israel, in 2004, and is
serving as the school’s dean since 2012. She received her
PhD from the CS department at the Technion in 2001.
Her research interests include design and analysis of
algorithms, resource allocation problems, and algorithmic
After graduation, she spent two years as a lecturer and
postdoctoral fellow at the University of Washington in
Seattle.

http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0010
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0020
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0025
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0030
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0035
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0040
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0045
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0045
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0045
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0045
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0045
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0045
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0045
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0045
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0045
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0045
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0045
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0050
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0070
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0080
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0085
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0090
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0095
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0100
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0110
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0115
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0120
http://www.parallels.com/products/pvc
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0130
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0135
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://refhub.elsevier.com/S2210-5379(14)00052-3/sbref0160
http://www.xenproject.org/

	Reoptimization of the minimum total flow-time scheduling problem
	1 Introduction
	1.1 Problem statement and notation
	1.2 Related work
	1.3 Our results

	2 Optimal modified schedule using minimal budget
	3 When the modification occurs at time t>0
	3.1 Restarts are not allowed
	3.2 Restarts are allowed

	4 Efficient algorithms for identical migration costs
	4.1 Review and properties of SPT algorithm
	4.2 Efficient optimal algorithm
	4.3 Linear-time algorithms for some special cases
	4.3.1 Adding machines
	4.3.2 Removing machines

	5 Rescheduling with a limited budget – unit migration costs
	6 Conclusions and future work
	References

