
Scheduling Jobs with Dwindling Resource
Requirements in Clouds

Sivan Albagli-Kim∗ Hadas Shachnai∗ Tami Tamir †

∗ Computer Science Department, Technion, Haifa 32000, Israel
E-mail: {hadas,sivanal}@cs.technion.ac.il

† School of Computer Science, The Interdisciplinary Center, Herzliya, Israel
E-mail: tami@idc.ac.il

Abstract—We consider a job-scheduling problem aris-
ing on cloud systems and in broadcasting networks,
where the goal is to optimally utilize a limited amount
of a resource (e.g., cloud servers, bandwidth, or storage
capacity) available along a given time interval. The
resource is utilized by a set of weighted jobs. The
processing of a job consists of several contiguous stages,
each having a specific length and a specific resource-
demand, such that the set of demands forms a decreasing
sequence. Each job is associated with a release time
and a deadline, defining the time interval in which it
can be processed. Some notable applications for this
scenario include progressive download, QuickStart and
prefetching methods, hierarchical image reconstruction,
and routine security and maintenance tasks. The goal is
to find a feasible schedule of a maximum-weight subset
of the jobs. In a feasible schedule, at any time, the total
amount of resource allocated to the active jobs does not
exceed the available amount of resource.

Since this problem is NP-hard already for highly
restricted inputs, we focus on obtaining approximation al-
gorithms and heuristics and present a comparative study
among them. Our main result, the first constant-factor
approximation algorithm for the problem, generalizes the
state of art for the fundamental problem of resource
constrained real-time scheduling, to scenarios where jobs
may have dwindling resource requirements. Our empirical
study shows that this algorithm is in fact nearly optimal
for realistic inputs.

I. INTRODUCTION

The emergence of cloud systems as a common
computation resource gives rise to plenty of opti-
mization problems. Many of these problems deal with
scheduling jobs that require cloud services, or with

optimal utilization of the limited cloud resources. This
paper considers one such resource-utilization prob-
lem. Specifically, the service provider has a limited
amount of some resource (e.g., bandwidth, compu-
tational power, storage), and is presented with a set
of demands for the resource. Since the amount of
resource is limited, only a subset of the demands can
be serviced, and the goal is to select the most profitable
subset and to grant service in a feasible way.

Several variants of this scheduling problem were
studied in the past (see below), however, all of these
previous works refer to inputs where each job has a
fixed resource demand throughout its processing. In
practice, the resource consumption of jobs is not neces-
sarily fixed and tends to decrease along the processing
of the job. That is, jobs require the largest amount of
resource for the initial part of their processing, and
their resource demands dwindle as they make progress
towards completion.

For example, a progressive download is the transfer
of digital media files from a server to a client, typically
using HTTP protocol. The consumer may begin play-
back of the media before the download is complete.
Since, unlike streaming, the digital media data is stored
at the end-user device, the bandwidth requirement of
the user reduces with time − initially, many segments
are downloaded, and as the playback advances, less
segments are missing (see, e.g., [3], [11]). Similarly,
in image processing, hierarchical bitstream structures
are used for progressive image reconstruction. Thus,
the required bit rate reduces with time [7]. Dwindling
resource requirements characterize also several applica-
tions in network security − files that are uploaded to a
cloud or to a shared server need to undergo a sequence978-1-4799-3360-0/14/$31.00 c⃝2014 IEEE

of tests. These tests are performed in parallel, and their
total capacity reduces with time.

While such scenarios are common, not much atten-
tion was given to resource allocation in servicing jobs
with dwindling requirements. In this paper, we formu-
late the problem theoretically, study its complexity and
present an approximation algorithm with guaranteed
performance ratio, as well as several heuristics.

Assume that B units of some resource are available
during the time interval [0, T]. The system receives a
set of n service requests. Each request corresponds
to a job whose processing consists of several con-
tiguous stages. Each stage has a specific length and
a specific resource-demand, such that the set of de-
mands forms a decreasing sequence. Formally, the
resource requirement of job j is given by a tuple
⟨(p1j , c1j), . . . , (p

bj
j , c

bj
j)⟩, where bj ≥ 1 denotes the

number of stages job j consists of, and (pkj , c
k
j) denote

the processing time and the capacity (resource demand)
of stage k. The total processing time of job j is
pj =

∑bj
k=1 p

k
j . In addition, each job has a release

time, rj ≥ 0, a deadline, dj ≤ T and a weight, wj ,
corresponding to the profit gained if job j completes
processing by its deadline.

Example: Assume that the system has B = 100GByte
of bandwidth available from time 0 to time 10. Four
clients require broadcasting services, each presenting
a single job to the system. Job 1 consists of three
stages ⟨(1, 90), (2, 60), (1, 20)⟩. The job is released at
time 0 and its deadline is 8. That is, it should be
processed in the time interval [0, 8]. Job 2 consists
of four stages ⟨(2, 80), (1, 50), (2, 20), (1, 10)⟩, and it
should be processed in [2, 10]. Job 3 consists of two
stages ⟨(3, 70), (1, 60)⟩, and it should be processed
in [1, 10]. Finally, Job 4 consists of three stages
⟨(2, 60), (2, 30), (2, 20)⟩, and it should be processed in
[2, 9]. Assume that job weights are 5, 4, 3, 2, respec-
tively. Fig. 1 presents a possible feasible schedule of
the first three jobs. The profit from this schedule is
5 + 4 + 3 = 12. Note that there is no meaning to
the physical location of the jobs (i.e., the ‘stairs’ in
the processing of J1

2 , J
1
3 do not really exist), and the

only constraint is that the total demand of job-stages
processed at any time is at most B = 100.

A. Related Work

Scheduling has been a perpetual field of research
in operations research and computer science (see e.g.,
[5], [1], [2], [9] and references therein). Of specific

Fig. 1. A feasible schedule of three jobs.

relevance to our work are [9], [1], which consider vari-
ations of the interval-scheduling problem. In particular,
these papers consider the special case of our problem
where the amount of resources allocated to each job is
fixed throughout its execution. The best known results
for this problem are due to [1]. The authors distinguish
between discrete inputs, where each job has a finite set
of possible start times, and continuous inputs, where
jobs are associated with time windows in which they
can be processed. The authors present approximation
algorithms that achieve for the two types of inputs the
ratios of 5 and 5 + ε, respectively.

Our results relate also to previous work on resource
allocation to batch jobs in cloud systems. Jain et al. [6]
studied the Bounded Flexible Scheduling (BFS) prob-
lem that is directly motivated by the cloud computing
paradigm. A cloud containing B servers receives a set
of job requests with heterogeneous demand and values
per deadline, where the objective is to maximize the
sum of the values of the scheduled jobs. The scheduling
of a job is flexible, i.e., it can be allocated a different
number of servers per time unit and in a possibly
preemptive (non-contiguous) manner, under parallelism
thresholds. The parallelism threshold represents the
job’s limitations on parallelized execution. For any
job j, denote by kj the maximum number of servers
that can be allocated to job j at any given time unit,
and let kmax = maxj kj be the maximal parallelism
threshold across jobs. The paper [6] presents an LP-
based approximation algorithm for BFS that is shown
to yield a ratio of (1+ B

B−kmax
)(1+ ε) to the optimal,

for any ε > 0. This ratio approaches 2 for instances
where kmax is much smaller than the cloud capacity
B; however, the existence of efficient approximation
for instances where kmax is large remained open.

Another resource constrained scheduling problem
in which jobs consist of stages was studied by Bar-
Yehuda and Rawitz [4]. In their setting, each job
consists of at most b uniform-capacity stages that may

occur in non-consecutive time intervals. The authors
present a 6b-approximation algorithm, using an exten-
sion of the primal-dual schema.

B. Our Contribution

The Dwindling-Jobs Scheduling problem is a gener-
alization of several NP-hard problems. It combines the
hardness of classical subset-selection problems such as
Knapsack (corresponding to instances where all single-
stage jobs require the resource for the same interval
and have demands and weights), with the hardness
of the classic interval-scheduling problem [10] (cor-
responding to the case of uniform-width single-stage
jobs). Thus, we focus on obtaining polynomial-time
approximation algorithms and heuristics. For r ≥ 1, a
polynomial-time r-approximation algorithm for a max-
imization problem P is a polynomial-time algorithm
that outputs, for any instance I of P , a solution whose
value is equal to at least 1/r times the value of an
optimal solution for I .

We present a comparative study of approximation
algorithms and heuristics for scheduling jobs with
dwindling resource requirements. Our main result (in
Section II) is an approximation algorithm that yields a
5.15-approximation for the problem. This generalizes
the state of art for the fundamental problem of resource
constrained real-time scheduling, to scenarios where
the amount of resources allocated to a job can change
over time.

In solving the BFS problem, it was shown in
[6] that there exists an optimal schedule that is non-
preemptive, i.e., each job is scheduled contiguously,
and the number of servers allotted to each job is
monotonically non-increasing throughout its execution.
Thus, the results in Section II can be used to obtain for
the BFS problem an improved ratio of min(5.15, 1 +

B
B−kmax

(1+ε)), where kmax is the maximum number
of servers allocated to any job. In particular, we can
apply the rounding method described in Section II
to the non-preemptive monotone (fractional) solution
obtained in [6] for the linear programming relaxation
of BFS. This gives a constant approximation ratio for
any value of 1 ≤ kmax ≤ B.

Our empirical study (in Section III), in which we
compare the performance of our approximation algo-
rithm with several natural heuristics for the problem,
shows that this algorithm is in fact nearly optimal for
realistic inputs.

The heuristics suggested in our empirical study
perform well on average on random inputs and are
very simple to implement. We analyze and compare
their performance and characterize the inputs for which
each of them is expected to output good solutions.
We also studied the effect of changing the density
of the request set, the window size of the jobs, and
the number of job-stages on the performance of the
proposed heuristics. One of the heuristics constructs
the schedule greedily, considering the jobs in non-
decreasing order by their release times. The relatively
poor performance of this heuristic hints that the on-line
version of this problem, where jobs should be admitted
to the system (or rejected) upon arrival, is significantly
more challenging than the off-line one.

Technique: Bar-Noy et. al. [2] introduced an elegant
method of rounding fractional schedules to obtain
valid (integral) schedules. Applying this method, they
derived the first constant-factor approximation algo-
rithms for the problem of non-preemptively schedul-
ing jobs with weights, release times and deadlines
on one machine so as to maximize the weight of
those jobs completed by their due dates. Using the
common scheduling notation, this problem is denoted
1|rj |

∑
wj(1−Uj). Their technique in essence decom-

poses the fractional solution into a convex combination
of integral solutions and chooses the best, which is
guaranteed to have value within a constant-factor of
optimal. We present more details of their method in
Section II. Our analysis builds on a refined analysis
for this rounding method given by Phillips [8], for
the problem of real-time scheduling with resource
requirements, where the amount of resources allocated
to a job is fixed throughout its processing.

II. APPROXIMATION ALGORITHM

In this section we give a constant factor approx-
imation algorithm for the Dwindling-Jobs Scheduling
problem. The algorithm is based on rounding an op-
timal (fractional) solution for the linear programming
relaxation of the problem.

Theorem 2.1: There is a polynomial-time 5.15-
approximation algorithm for the Dwindling-Jobs
Scheduling problem.

Proof: The proof is based on the framework of
[2], [9]. We first find an optimal solution for a linear
programming relaxation of the problem, and then round
it into a feasible integral solution. In rounding the (frac-
tional) solution we generalize the coloring subroutine

of [2]. We assume that time is slotted and jobs can
begin their processing only at the beginning of a time
slot. The number of time-slots is polynomial. As in
[2], this assumption can be removed at the cost of
increasing the approximation ratio by one.

Let K be the set of start times for the slots. For
every job j, let P (j) = K ∪ [rj , dj − pj] be the set
of time-points in which job j can start. For any job j,
we define |P (j)| + |P (j)|bj variables: yj,t for every
t ∈ P (j), and xi

j,t for every t ∈ P (j) and 1 ≤ i ≤ bj .
The variable yj,t indicates whether job j was selected
to be processed starting at time point t. The variable
xi
j,t indicates whether the i-th stage of job j that begins

at time point t is processed. In any integral solution,
yj,t =

∧bj
i=1 x

i
j,t.

For every time-point ℓ ∈ K, let I(ℓ) be the set of
intervals jit that are active at time ℓ. Formally,

jit ∈ I(ℓ) if and only if t+
i−1∑
k=1

pkj < ℓ ≤ t+
i∑

k=1

pkj ,

where jit denotes the i-th stage of job j’s instance when
starting at time t.

We solve LPD, the linear programming relaxation
of an integer program describing our problem. The
objective function is to maximize the profit from jobs
selected to be processed. The set of constraints (1)
guarantee that the resource utilization does not exceed
the available amount. Constraints (2) guarantee that
every job is processed at most once. Constraints (3)
reflect the fact that a job is considered processed only
if all of its stages are processed.

(LPD) max
n∑

j=1

∑
t∈P (j)

wj · yj,t

subject to:
∑

jit∈I(ℓ)

xi
j,t · cij ≤ B ∀ 0 ≤ ℓ ≤ |K| (1)

∑
t∈P (j)

yj,t ≤ 1 ∀j (2)

yj,t ≤ xi
j,t ∀j, i, t (3)

0 ≤ yj,t ≤ 1 ∀j, t (4)
0 ≤ xi

j,t ≤ 1 ∀j, i, t (5)

Before presenting the rounding technique of an
optimal fractional solution, we note the following prop-

erty.

Observation 2.2: There exists an optimal solution
for LPD in which for all j, t, yj,t = x1

j,t = x2
j,t =

· · · = x
bj
j,t.

Proof: For any feasible solution x, y, by the
set of constraints (3), it holds that yj,t =

min(x1
j,t, x

2
j,t), · · · , x

bj
j,t. By setting xi

j,t = yj,t for all
xi
j,t, there is no harm to the objective function, and all

the constraints are satisfied.

Given an optimal solution for LPD, satisfying the
conditions of Observation 2.2, we first round down
every variable xi

j,t to the form

xi
j,t =

aij,t
n2|K|2

,

1 ≤ aij,t ≤ n2|K|2. We then define the following set
of intervals: Every variable xi

j,t contributes aij,t copies
of the interval jit . The set of constraints (1) in LPD
implies the following.

Observation 2.3: For every time point t, the total
number of copies of intervals active at time t is at most
Bn2|K|2.

By Observation 2.2, we assume that a1j,t = a2j,t =

· · · = a
bj
j,t. We denote all these values by aj,t, and refer

to the intervals as ajt copies of job jt.

We now show that it is possible to split the set
of duplicated intervals into A = 5.15n2|K|2 feasible
schedules. In order to count the number of feasible
schedules, we color the intervals such that every color-
set induces a feasible schedule: for every instance jt
of job j, all intervals jit ∈ jt receive the same color. In
addition, for every time point t, and for every color γ,
the total resource demand of intervals that are colored γ
and are active at time t is at most B. We now describe
the coloring procedure in detail.

Greedy Interval Coloring: Sort the duplicated
intervals in non-decreasing order by their start times,
breaking ties arbitrarily. Consider the intervals in the
sorted order. We describe the color selection for inter-
vals corresponding to the first stage of each job, since
whenever a first-stage interval is colored, the same
color is given to all subsequent stages of this instance.

1) Let j1t be the next uncolored interval. Color
j1t in the first legal color. A color γ is not
legal for job j1t either if another copy of j1t

is already colored γ (recall that there are aj,t
copies of j1t), or if one of the copies of j1r
for r < t is colored γ, or if coloring it with
color γ will violate the resource availability
constraint.

2) Color the intervals j2t , . . . , j
bj
t corresponding

to the same instance as j1t in the same color
as j1t .

We show that the greedy interval-coloring proce-
dure produces a legal coloring using at most A =
5.15n2|K|2 colors.

Lemma 2.4: The greedy interval-coloring proce-
dure outputs a coloring in which the intervals in every
color-set form a feasible solution for the Dwindling-
Jobs Scheduling problem.

Proof: Consider the coloring of a copy of j1t . If
the instance is colored by a new color, then in Step 2
the remaining stages of this instance are also colored
in the same new color and the new color-set contains
a single job, which is clearly a valid schedule. If the
instance is colored by color γ that is used already by
other job-instances, then since γ is valid for this copy
of j1t , no other instance of this job - in an earlier time
window or another copy of j1t , is colored γ. Also, the
addition of c1j to the total resource demand of intervals
having color γ that are active at time t does not exceed
the resource capacity B. Since resource demands are
dwindling and jobs are colored in non-decreasing order
of their start times, the total resource demand by jobs
colored γ at any time point t′ > t is at most B −
c1j . Thus, it is safe to color with γ also the intervals
j2t , . . . , j

bj
t of this job instance.

Lemma 2.5: The greedy interval-coloring proce-
dure uses at most A = 5.15n2|K|2 colors.

Proof: We count the maximal number of illegal
colors when examining the interval j1t . We distinguish
between two types of intervals.

(i) Interval j1t with resource demand c1j < B.
We show that this interval will find a valid color in
the set of the first n2|K|2 + Bn2|K|2

B−c1j
colors. First,

combining constraints (2) and (3), with the fact that
x1
j,t =

a1
j,t

n2|K|2 , we have that at most n2|K|2 colors are
assigned already to intervals corresponding to job j.
Second, by Observation 2.3, at most Bn2|K|2

B−c1j
colors

are illegal due to the resource availability constraint.

This implies that only intervals with capacity at
least c1j will be colored with a color indexed z, such

that

z ≥ n2|K|2 + Bn2|K|2

B − c1j
. (6)

Let cz be the minimal capacity of the first stage of a
job in color-set z. For the color-set with index z that
satisfies (6), we have

cz ≥ c1j (z) = B − Bn2|K|2

z − n2|K|2
(7)

Therefore, if the color set z is not empty, the min-
imal resource demand of some interval in z is at
least the right hand side of Equation (7). By setting
z = 2n2|K|2 + 1 in Equation (7) we get that cz ≥
B − Bn2|K|2

z−n2|K|2 > 0.

(ii) Interval j1t with resource demand c1j = B. Such
an interval will have to get a new color δ. By the above
discussion, we distinguish between two cases:
(1) If δ is in the range [1, z], where z = 2n2|K|2 + 1,
we are done. Otherwise,
(2) Let c1min be the minimal resource demand of a
first stage of any of the input jobs. If δ > z then in
every color-set in the range 1, 2, · · · , z there is at least
one interval with demand at least c1min. We bound the
number of color-sets larger than z that are blocked for
j1t .

In the worst case, each of the 2n2|K|2 + 1 first
color-sets contains a single interval with demand c1min,
and j1t cannot be added to none of these color-sets. We
turn to examine how many color-sets with index larger
than 2n2|K|2+1 are non-empty, assuming each of the
color-sets contains a single interval with the minimal
demand, c1min. Let Cmaxn

2|K|2 be the index of the
maximal color-set using this assumption. We want to
find the maximal value Cmax can get.

Suppose that every color-set in the range
1, · · · , Cmaxn

2|K|2 contains a single interval with
minimal resource demand. Also, all the color-sets
with index larger than Cmaxn

2|K|2 are empty, ex-
cept maybe for the first n2|K|2 color-sets with index
larger than Cmaxn

2|K|2, which are color-sets with self
conflict. By self-conflicts we refer to all other copies
of j1t that need to receive distinct colors. The number
of such copies is at most n2|K|2. This adds at most
n2|K|2 colors. Hence, the maximum index for a non-
empty color-set is at most Cmaxn

2|K|2+n2|K|2. Now,
we find an upper bound for Cmax. After calculating
the integral of the minimal demand in every color-set

between 2n2|K|2 + 2 and Cmaxn
2|K|2, that is:∫ Cmaxn

2|K|2

2n2|K|2+2

(B − Bn2|K|2

z − n2|K|2
)dz, (8)

we get that Cmax ≤ 4.15.

Thus, the interval j1t will find a valid color whose
index is at most (Cmax +1)n2|K|2 = 5.15n2|K|2.

Note that OPT =
∑

j,t wjyj,t =
∑

j,t wjx
1
j,t. In

addition, xi
j,t ≤ ai

j,t+1

n2|K|2 which implies that aij,t ≥
xi
j,tn

2|K|2 − 1. Therefore,∑
j,t

wja
i
j,t ≥

∑
j,t

wjx
i
j,tn

2|K|2 − 1

≥ OPTn2|K|2 − n|K|bj . (9)

By Lemma 2.5, there exists a group constrained
coloring that uses at most 5.15n2T 2 colors. Since
each color-set defines a feasible schedule, the coloring
induces 5.15n2|K|2 feasible schedules. By Equation
(9), at least one of these schedules has weight at least
OPT/5.15.

III. EMPIRICAL RESULTS

We have implemented the LP-based algorithm and
compared it with some natural heuristics. The general
scheme for all the heuristics is given below. The set S
describes the formed schedule; S is a collection of pairs
{j, t} where j is a job and t is the time rj ≤ t ≤ dj−pj
in which j starts its execution.

General Greedy Scheme

(1) S = ∅
(2) Use a certain rule to sort the jobs; consider

the jobs in this order.
a) Let j be the next job in the sorted

list. If j can be added to S, schedule
j in the earliest feasible time point in
[rj , dj − pj] and update S.

1) Return S.

For a job j, the area of j is the total resource ca-
pacity j requires along its stages. Formally, area(j) =∑bj

k=1 p
k
j · ckj . We have implemented Step (2) in four

different ways: sorting the jobs in (i) non-increasing
order of weights, (ii) non-increasing order of the ratio
weight/area, (iii) non-decreasing order of area, and
(iv) non-decreasing order of release times.

The heuristics resulting from application of the
above rules are simple and natural. Rule (i) gives high
priority to jobs associated with high profits; Rule (ii)
takes into account the amount of resource required
to achieve the profit; Rule (iii) gives high priority
to jobs with modest resource demand, and Rule (iv)
corresponds to an on-line system that admits jobs
greedy upon arrival.

In the first experiment we compared the perfor-
mance of the algorithms, as a function of the density of
the input. Recall that the resource is available during
the time interval [0, T]. The density of an input is
defined as the ratio between the total resource capacity
(area) of all jobs and the total availability of the
resource. Formally, 1

B·T ·
∑n

j=1

∑bj
k=1 p

k
j · ckj .

Since instances can be of variable densities, even
if the number of jobs is small, in this experiment, we
were able to calculate and compare the heuristics also
with an optimal solution. For each value of density
in {1/2, 4/3, 3/2, 5/2}, we used the same set of jobs
− with the same values of ⟨(p1j , c1j), . . . , (p

bj
j , c

bj
j)⟩.

However, the values of T , as well as the values of
job release-times and deadlines, were scaled to fit
the required density. Specifically, the values of T in
the different runs were 6, 10, 20 and 30. The resource
availability was set to B = 20 in all runs.

The generation of a single job consists of the
following steps: first, the number of stages is drawn
randomly (in this experiment, bj was a random integer
between 1 and 6), then, bj values in the range [0, B/2]
were drawn uniformly and independently. These num-
bers were sorted in a descending order - to get the
dwindling values of c1j , . . . , c

bj
j . Then, we randomly

set each stage length pkj to be either 1 or 2. The
release-time and deadlines were set to random points
in [0, T − pj] and [rj + pj , T], respectively. Finally,
jobs’ weight was drawn from the range 1, . . . , 50. All
values were chosen uniformly and independently.

We run the experiment with each density value
10 times, each time with a new set of 10 jobs. The
results (average of all runs) are presented in Fig. 2.
In each chart, the rightmost column corresponds to
the performance of an optimal solution. We scaled the
results such that OPT = 1, and the performance of
each of the other algorithms is given as a fraction
smaller than 1. As can be seen in the figures, the
LP-based approximation algorithm performs close to
optimal for all density values. It outpreforms most
of the heuristics and preforms much better than its

Fig. 2. The performance of all algorithms compared to OPT,
as a function of the input’s density

theoretical approximation-ratio. It can also be seen that
the most challenging density for all four heuristics
is 3/2. In sparser inputs, the resource is relatively
available, thus, it is possible to schedule more jobs
and even simple heuristics perform well. High-density

instances are on one hand more challenging, because
every inclusion of a job affects the availability of
the resource along a significant portion of its active
time, but on the other hand, rejection of jobs can be
compensated by inclusion of other jobs that require
the resource in an overlapping time window. Another
interesting conclusion is that the weight/area heuristic
improves its performance as the density increases, and
the rj heuristic reduces its performance significantly
when the density increases.

In the second experiment we compared the per-
formance of the heuristics on variable-size inputs.
For each n ∈ {50, 200, 500, 1000} we run the four
heuristics with the following parameters: The machine
was available during the time interval [0, 50] and its
capacity was set to B = 50. The jobs were created
randomly as described in the first experiment with
bj ∈ {1, . . . , 8}. The input for any n > 50 was created
by adding jobs to the previous input. For example, the
input for n = 500 consists of the input for n = 200
and 300 newly created jobs. Each experiment was run
50 times. Fig. 3 presents the results of this experiment
(average of all runs).

Fig. 3. Total profit as a function of the input size.

As illustrated in Fig. 3, the weight/area-heuristic
outpreforms the other heuristics, and its advantage is
more significant as the number of jobs increases. On
the other hand, the rj-heuristic - which is the most
natural on-line algorithm, achieves only half the profit
of weigth/area on large instances. This result hints that
the online version of the problem, in which jobs must
be rejected or accepted upon arrival, is much more
difficult than the offline setting, in which it is possible
to select the subset of processed jobs only after all
requests are known.

In the third experiment we measured the affect
of keeping the system’s density while increasing the
number of jobs and the jobs’ processing-interval length
(dj−rj). For each x = {25, 100, 250, 500}, we run the
four heuristics with n = 2x jobs, where the machine is
available during the time interval [0, x] and its capacity
is B = 50. We note that since the ratio between
n and T remains the same (n = 2T), the expected
density of the input remains the same; however, since
the release-time of a job is a random point in [0, T−pj],
and the deadline is a random point in [rj + pj , T],
when x increases, also the gap between the release-
time and deadline is increased. Thus, the system has
more flexibility in assigning the jobs.

The jobs were created as described in the first
experiment. The input for any n > 50 was created by
expanding the previous input - adjust it to the new value
of T , and adding new jobs. For example, the input for
n = 500 consists of the input for n = 200 (same values
of ⟨(p1j , c1j), . . . , (p

bj
j , c

bj
j)⟩ with new random rj and dj

values), and 300 newly created jobs. Each experiment
was run 50 times. Fig. 4 presents the results (average of
all runs). The y-axis gives the average profit per time
slot, that is, the total weight of processed jobs divided
by T .

Fig. 4. Profit per time-slot as a function of resource active
time.

As illustrated in Fig. 4, all heuristics, except for the
rj-heuristic benefit from extending the active time of
the machine and the flexibility in the assignment. This
flexibility is not necessarily positive for the rj-heuristic
since it enables accepting early-released jobs that con-
sume the machine’s resource and avoid accepting later,
possibly more profitable, jobs.

In the last experiment, we measured the influence
of the number of stages on the performance of the
heuristics. We fixed T = 600 and B = 20. For each of
the n = 200 jobs, the job’s area was fixed for all the
experiments. The expected area of the jobs was set such
that the expected density of the inputs is 3/2. In the
first set of runs, with bj = 2, we generated the jobs as
in the first experiment. For the other sets of runs, with
bj = 3, 6, 10, jobs with the same area were used, that
is, the number of stages increases while the length and
capacity of each stage decrease. Thus, the heuristics
had to cope with ’shallower and longer’ stairs. Each
experiment was run 50 times. The results are presented
in Fig. 5.

Fig. 5. Total profit as a function of the number of stages in
a job.

As illustrated in Fig. 5, the heuristics that prefer
jobs with high weight and high weight/area perform
better than the other two heuristics. When examining
each heuristic separately we see that it achieves almost
the same profit (a difference of 2 − 3%) independent
of the number of jobs’ stages, with a slight better
utilization when jobs consist of only two stages.

IV. CONCLUSIONS AND OPEN PROBLEMS

We presented theoretical and experimental results
for the Dwindling-Jobs Scheduling problem. Our LP-
based approximation algorithm yields a constant factor
approximation ratio. An empirical study shows that this
algorithm outperforms several natural greedy heuris-
tics, and for realistic inputs it is nearly optimal.

Although the studied heuristics preform well on
general arbitrary inputs, none of them guarantees a
constant-factor approximation to the optimal profit.
The following simple example shows that the heuristics

can fail already for inputs where each job consists of a
single stage. Consider an input having one job with a
single ’long and thin’ stage, i.e., with high processing
time and small capacity, and r additional jobs, each
consisting of a single ’short and fat’ stage. One can set
the job parameters such that all four heuristics select
the first job, and therefore will not be able to schedule
any of the other jobs. On the other hand, an optimal
solution selects all but the first job. By setting w1 = 1
and wj = 1 − ε for 2 ≤ j ≤ r + 1, we get that
OPT = r(1− ε), while all the heuristics yield a profit
of 1.

In general, our experiments reveal that simple
heuristics perform very well on relatively ‘uniform’
instances − when jobs have similar ’shapes’ − similar
number of stages, similar dwindling pace, and similar
areas. Systems that are expected to provide service
to a sequence of homogeneous requests can achieve
close to optimal utilization when jobs are selected by
simple greedy rules, that are based on job weights
or weight/area ratios. On the other hand, when the
goal is to maximize resource utilization in a system
servicing heterogeneous requests, the performance of
the heuristics may be significantly worse than the
optimal, and a more sophisticated scheme, such as the
LP-based algorithm, should be used.

We also conclude that increasing the average num-
ber of stages in a job while keeping its total resource
demand does not make the instance harder to solve.
That is, all heuristics perform almost the same (with
up to 2 − 3% change in the resource utilization) on
instances with fixed area and variable number of stages
for the jobs.

Our LP-based approximation algorithm assumes
that job stages must be performed contiguously and
that job resource demands dwindle as they make
progress towards completion. An interesting avenue
for future work is to study whether a constant-factor
approximation algorithm exists if one of these assump-
tions is relaxed. Namely, (i) the sequence of resource-
demands of a job is not necessarily dwindling. We note
that even the case of monotone-request jobs (a combi-
nation of dwindling-request or expanding-request jobs)
is non-trivial and requires new tools. (ii) jobs can be
preempted − in general or only at end-of-stage time
points.

Another direction to explore is the online version
of the problem, in which jobs must be admitted or
rejected upon arrival. Using an instance similar to the
one described above, it is easy to see that no algorithm

achieves a constant competitive ratio for this problem;
this calls for a study of online algorithm on restricted
inputs, or with resource augmentation.

REFERENCES

[1] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and
B. Schieber. A unified approach to approximating
scheduling and allocation of resources. J. of the ACM,
48(5):1069–1090, 2001.

[2] A. Bar-Noy, S. Guha, J. Naor, B. Schieber. Approxi-
mating the throughput of multiple machines in real-time
scheduling. SIAM J. Comput. 31(2): 331–352 (2001).

[3] A. Bar-Noy, R.E. Ladner, T. Tamir. Optimal delay for
media-on-demand with pre-loading and pre-buffering.
Theoretical Computer Science 399(1), 3–11, 2008.

[4] R. Bar-Yehuda, D. Rawitz. Using fractional primal-
dual to schedule split intervals with demands. Discrete
Optimization 3(4): 275–287 (2006).

[5] P. Brucker. Scheduling Algorithms, 4th ed. Springer,
Heidelberg, 2004.

[6] N. Jain, I. Menache, J. Naor, J. Yaniv. A truthful mech-
anism for value-based scheduling in cloud computing.
SAGT, 2011.

[7] H. S. Malvar. Fast progressive image coding without
wavelets. IEEE Data Compression Conference, Utah,
2000.

[8] C. A. Phillips. Personal communication.
[9] C. A. Phillips, R. N. Uma, J. Wein: Off-line admission

control for general scheduling problems. In SODA, pp.
879–888, 2000.

[10] F. C. R. Spieksma, On the approximability of an
interval scheduling problem, J. of Scheduling, vol. 2 pp.
215–227, (1999).

[11] A. Zambelli. IIS Smooth streaming technical overview.
Microsoft Corporation, March 2009.

