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Abstract
We study capacitated automata (CAs), where transitions correspond to resources and may have
bounded capacities. Each transition in a CA is associated with a (possibly infinite) bound on
the number of times it may be traversed. We study CAs from two points of view. The first
is that of traditional automata theory, where we view CAs as recognizers of formal languages
and examine their expressive power, succinctness, and determinization. The second is that of
resource-allocation theory, where we view CAs as a rich description of a flow network and study
their utilization.
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1 Introduction

Finite state automata are used in the modeling and design of finite-state systems and their
behaviors, with applications in engineering, databases, linguistics, biology, and many more.
The traditional definition of an automaton does not refer to its transitions as consumable
resources. Indeed, a run of an automaton is a sequence of successive transitions, and there
is no bound whatsoever on the number of times that a transition may be traversed. In
practice, the use of a transition may correspond to the use of some resource. For example,
it may be associated with the usage of some energy-consuming machine, application of
some material, or consumption of bandwidth. We study capacitated automata (CAs). In
this model, transitions correspond to resources and may have bounded capacities. Formally,
each transition is associated with a (possibly infinite) integral bound on the number of times
it may be traversed. A word w is accepted by a nondeterministic capacitated automaton
(NCA) A if A has an accepting run on w; one that reaches an accepting state and respects
the bounds on the transitions.

We examine CAs from two points of view. The first, more related to traditional auto-
mata theory, views CAs as recognizers of formal languages. The interesting questions that
arise in this view are similar to classical questions about automata: their expressive power,
succinctness, determinization, decision problems, etc. The second view, more related to
traditional resource-allocation theory, views CAs as labeled flow networks. The interesting
questions then have to do with optimal utilization of the system modeled by the CA.

Let us start with the first view. In terms of expressive power, we show that capacities can
be removed. Thus, NCAs are not more expressive than nondeterministic finite automata
(NFAs), and can recognize exactly all regular languages. The main questions that arise,
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then, refer to the succinctness of the capacitated model with respect to the standard one, as
well as the blow-up involved in their determinization. Consider, for example, the language
Ln,m over the alphabet Σn = {1, . . . , n} that contains exactly all words in which each
letter in Σn appears at most m times. It is not hard to see that a traditional, possibly
nondeterministic, automaton for Ln,m needs at least mn states. On the other hand, a
deterministic capacitated automaton (DCA) for Ln consists of a single state with n self-loops,
each labeled by a different letter from Σn and has capacity m. Hence, both NCAs and DCAs
may be exponentially more succinct than NFAs. The nondeterministic model, however, is
much stronger, and determinization involves a blow-up that is not only exponential in the
state space but also linear in the product of the capacities. Note that the latter is at least
exponential in the number of transitions. This is surprising, as we do allow the obtained
DCA to have capacities. As we show, there are languages, in particular strongly liveness
languages [1], for which the power of capacities is significant in the nondeterministic model
but is not realized in the deterministic one.

We then turn to solve decision problems about CAs. Two classical problems are the
nonemptiness (does A accept at least one word?) and the membership (does A accept a
given word w?) problem. In the traditional model, the problems are essentially the same:
checking whether A accepts w can be reduced to checking the emptiness of the product of
A with w. Accordingly, both problems can be reduced to reachability. In the capacitated
model, taking the product of a word with an automaton may require tracing the history of
traversals, and indeed we prove that while the nonemptiness problem is not more difficult
than in the traditional model, membership becomes NP-complete for NCAs. Moreover, if
we augment the nonemptiness problem to consider words from a given language (that is,
given a CA A and a regular language L, decide whether A accepts some word from L), it
becomes NP-complete already for DCAs, even when L is given by a DFA.

We continue to the second view, where CAs model labeled flow networks. In order to
motivate this view, let us first demonstrate the different ways in which we consider CAs
in the two views. Consider the containment problem for CAs, asking whether a given set
S of words is contained in the language of a CA A. We can think of two variants of the
problem. In the first, which corresponds to our first view, we ask whether A accepts w for
each word w ∈ S. In the second, which corresponds to our second view, we ask whether
A mutually accepts all words in S. That is, whether A has enough capacity to process
all the words in S mutually. It is not surprising that a CA may contain S in the first
view but not in the second. Consider for example the NCA A described in Figure 1. Let
S = {ab, abc, ac, abb, abcb}. Clearly, all the words in S are accepted by A, thus A contains
S in the first view. On the other hand, there is no way for A to mutually accept all the
words in S. Indeed, it is not hard to see that A can make only a single use of the edge
〈q1, c, q2〉 even though its capacity is 2, whereas S contains three words with the letter c.
Note that A can mutually accept the set S′ = {ab, ac, abb, abcb}, but one has to carefully
resolve nondeterminism in order to do it. For example, once A processes abb via q1, it can
no longer process both ac and abcb. Thus, in the second view, the challenge is to find ways
to mutually accept in a given NCA as many words as possible, as we formally define below.

A natural problem that arises when reasoning about systems that consist of resources
with limited capacities is to utilize these resources in the best way. In our model, the max-
utilization problem is defined as follows. Given a CA A, return a multiset W of words,
such that A mutually accepts all the words in W , and |W | is maximal. The max-utilization
problem can be viewed as a generalization of the max-flow problem in networks [11]. In the
max-flow problem, the network is utilized by units of flow, each routed from the source to
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Figure 1 An NCA that contains S = {ab, abc, ac, abb, abcb} in the traditional view but does not
contain S mutually.

the target. The CA model enables a rich description of the feasible routes. The labels along
a path correspond to a sequence of applications of resources. In particular, paths from an
initial state to a final state correspond to feasible such sequences, and the goal is to mutually
process as many of them as possible.

Sometimes, not all the sequences feasible in the NCA are desirable. Accordingly, we
also consider the max restricted-utilization problem, where the input to the problem also
includes a language specifying the desirable sequences. Then, the words in the multiset W
must belong to this language. For example, the language may restrict the length of the
sequences, preventing long sequences from consuming the system (see [17] for an analogous
restriction in flow networks), it may restrict the number of different resources applied in a
sequence, it may require an application of specific resources, it may require a specific event
to trigger another specific event, and so on. Thus, while in traditional flow problems the
specification of desired routes is given by means of a source and a target, the max restricted
utilization problem enables specifications that are much richer than reachability. A similar
lifting of reachability was studied in [3], where network formation games were extended
to automata formation games. We study the complexity of the max utilization problems
and show that while the unrestricted variant can be solved in polynomial time by a simple
reduction to a network maximum-flow problem, even simple restrictions on the desirable
routes make the problem hard to approximate. Essentially, this follows from the fact that
the basic idea of an augmenting path in a network cannot be adopted to NCAs. Indeed, in
NCAs every path corresponds to a sequence of applications of recourses, and the augmenting
path need not correspond to a desired such sequence.

Related Work

Many extensions of automata in which transitions are augmented by numerical values have
been studied. Most notable are probabilistic automata [19], where the values form a distri-
bution on the successor state, and weighted automata [10], where weights are used in order
to model costs, rewards, certainty, and many more. The semantics of these models is multi-
valued: each traversal of a transition updates some accumulated value, and the language of
the automaton maps words into some domain. In particular, the B and S automata of [8]
count traversals on transitions. Our semantics, on the other hand, maintains the Boolean
nature of regular languages, and only augments the way in which acceptance is defined.

More related to our work are extensions of automata that stay in the Boolean domain,
in particular ones whose semantics involves counting. Parikh automata were introduced and
studied by Klaedtke and Rueß in [16]. Their semantics involves counting of the number
of occurrences of each letter in Σ in the word. Essentially, a Parikh automaton is a pair
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〈A, C〉, where A is an NFA over Σ, and C ⊆ INΣ is a set of “allowed occurrences”. A word
w is accepted by 〈A, C〉 if both A accepts w and the Parakh’s commutative image of w,
which maps each letter in Σ to its number of occurrences in w, is in C. It is easy to see
that the expressive power of Parikh automata goes beyond regular language. For example,
Parikh automata can recognize the language {aibi : i ≥ 1} by defining A to recognize a∗b∗
and defining C to contain all pairs 〈i, i〉, for i ≥ 1. In fact, by [15], Parikh automata are as
expressive as reversal-bounded counter machines [13].

Several variants of Parikh automata have seen studied. In particular, [7] studied con-
strained automata, a variant that counts traversals of transitions and requires the vector of
counters to belong to C, now a semilinear set of allowed vectors. NCAs can be viewed as
a special case of constrained automata in which C is downwards closed. This significantly
restricts the expressive power of constrained automata, and indeed the types of questions
we consider are different than these studied for Parikh automata and their variants.

Additional strictly more expressive models include multiple counters automata [9], where
transitions can be taken only if guards referring to traversals so far are satisfied, and queue-
content decision diagrams, which are used to represent queue content of FIFO-channel sys-
tems [5, 6]. Finally, a model with the same name – finite capacity automata is used in [18] in
order to model the control of an automated manufacturing system. This model is different
from our CAs and is more related to Petri nets.

The above works take the first view on automata, namely study them as recognizers of
languages. As for the second view, a lot of research has been done on optimal utilization of
limited resources. In particular, as discussed above, max-utilization of a CA corresponds to
a maximum flow in a network [11]. By restricting the domain from which accepted words can
be chosen, we get an intractable problem. This resemble the intractability of some variants
of the max-flow problem, such as k-bounded flow [4], or max-flow with bounded-length paths
[17].

2 Preliminaries

A nondeterministic finite automaton (NFA, for short) is a tuple A = 〈Σ, Q,Q0,∆, F 〉, where
Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, ∆ ⊆ Q×Σ×Q
is a transition relation, and F ⊆ Q is a set of final states. Given a word w = σ1 · σ2 · · ·σl,
a run of A on w is a sequence r of successive transitions in ∆ that reads w and starts in
a transition from the set of initial states. Thus, r = 〈q0, σ1, q1〉, 〈q1, σ2, q2〉, . . . , 〈ql−1, σl, ql〉,
for q0 ∈ Q0. The run is accepting if ql ∈ F . We sometimes refer to the transitions function
δ : Q× Σ→ Q induced by ∆, thus q′ ∈ δ(q, σ) iff ∆(q, σ, q′). The NFA A accepts the word
w iff it has an accepting run on it. Otherwise, A rejects w. The language of A, denoted
L(A) is the set of words that A accepts. If |Q0| = 1 and for all q ∈ Q and σ ∈ Σ there is at
most one q′ ∈ Q with ∆(q, σ, q′), then A is deterministic. Note that a deterministic finite
automaton (DFA) has at most one run on each word.

A nondeterministic capacitated automaton (NCA, for short) is an NFA in which each
transition has a capacity, bounding the number of times it may be traversed. A transition
may not be bounded, in which case its capacity is∞. Let IN∞ = IN∪{∞} and IN+ = IN\{0}.
Formally, an NCA is a pair 〈A, c〉, where A is an NFA and c : ∆→ IN∞ is a capacity function
that maps each transition in ∆ to its capacity. A run of 〈A, c〉 is a run of A in which the
number of occurrences of each transition e ∈ ∆ is at most c(e). When A is deterministic,
then so is 〈A, c〉. For a CA A and a set of words S, we say that A mutually accepts S if
there are |S| accepting runs, one for each word in S, such that for each transition e ∈ ∆,
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the total number of occurrences of e in all these runs is at most c(e).
For a capacity function c : ∆→ IN∞, let c↓ be the set of capacity functions obtained by

closing c downwards. Formally, a function c′ : ∆→ IN∞ is in c↓ if for all transitions e ∈ ∆
with c(e) = ∞, we have c′(e) = ∞, and for all transitions e ∈ ∆ with c(e) ∈ IN, we have
0 ≤ c′(e) ≤ c(e). It is easy to see that the size of c↓, denoted |c↓|, is Πe:c(e)∈IN+(c(e) + 1).
Thus, |c↓| is exponential in the number of transitions with bounded capacities.

3 Theoretical Properties of NCAs

In this section we study the expressive power and succinctness of NCAs with respect to
NFAs, as well as their determinization.

3.1 Capacities Removal

I Theorem 1. NCAs accept regular languages: Every NCA 〈A, c〉 has an equivalent NFA
A′. The size of A′ is linear in the size of A and |c↓|.

Proof. Given an NCA 〈A, c〉 with A = 〈Σ, Q,Q0,∆, F 〉, we define an equivalent NFA A′ =
〈Σ, Q′, Q′0,∆′, F ′〉 as follows.

Q′ = Q × c↓ and Q′0 = Q0 × {c↓}. That is, each state in A′ maintains both the
corresponding state in A and the capacities that are left to be consumed.
For q, q′ ∈ Q, d, d′ ∈ c↓, and σ ∈ Σ, we have that ∆′(〈q, d〉, σ, 〈q′, d′〉) iff ∆(q, σ, q′),
d(〈q, σ, q′〉) > 0, d′(e) = d(e) for all e 6= 〈q, σ, q′〉, and d′(〈q, σ, q′〉) = d(〈q, σ, q′〉) − 1.
That is, d′ is updated to take the traversal of 〈q, σ, q′〉 into an account by reducing its
capacity by 1.
F ′ = F × c↓.

Note that the construction preserves determinism, thus if A is a DCA, the obtained A′ is
a DFA. It is not hard to prove that each run r of A corresponds to a run of A′, obtained by
pairing each state in r by the capacity function that reflects the updates to c according to
the transitions traversed so far. Dually, each run r′ of A′ corresponds to a run of A, obtained
by projecting r′ on the Q-elements of its states. By the definition of A′, the obtained run
respects the bounds on the transitions.

We prove that the blow-up in |c↓| cannot be avoided. We prove it already for single-
state DCAs. Given two parameters n,m ∈ IN, consider the DCA 〈An,m, cn,m〉, where
An,m = 〈{1, . . . , n}, {q}, {q},∆,{q}〉 is such that each letter i ∈ {1, . . . , n} contributes to ∆
the transition 〈q, i, q〉. That is, An,m consists of a single state with one self-loop transition
for each of the n letters. The capacity of all transitions is m. Thus, cn,m(〈q, i, q〉) = m for
all i ∈ {1, . . . , n}. It is easy to see that the language Ln,m of 〈An,m, cn,m〉 is the set of all
words in which each of the letters {1, . . . , n} appears at most m times, and that every NFA
that recognizes Ln,m needs at least nm states. J

Theorem 1 implies that, like regular languages, NCAs and DCAs are closed under union,
intersection, and complementation, and that NCAs can be determinized. The question is
the blow-up involved in the corresponding constructions, in particular whether they need to
involve removal of capacities.
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3.2 Determinization
In this section we study the succinctness of NCAs with respect to DCAs. We show that
NCAs are exponentially more succinct not only in the number of states but also in the
number of transitions. More precisely, determination may involve a blow-up linear in c↓.
This is surprising, as we do allow the obtained deterministic automaton to be capacitated.
We first prove that there are languages for which capacities are not useful in the deterministic
setting. A language L ⊆ Σ∗ is strongly liveness if L = Σ∗ ·L [1]. Thus, in terms of temporal
logic, strongly liveness languages correspond to properties if the form “eventually ψ” for
some behavior ψ.

I Lemma 2. A DCA for a strongly liveness language L is not smaller than a DFA for L.

Proof. Consider a DCA 〈A, c〉 that recognizes L. We say that a word w ∈ Σ∗ consumes
〈A, c〉 if, after reading w, a run of A can proceed only along transitions with infinite capacity
(or cannot proceed at all). It is easy to see that there exists at least one word w that consumes
〈A, c〉. Let q be the state that A reaches by reading w. Since L = Σ∗ · L, we have that
w ·L ⊆ L. Hence, since A is deterministic, the language of the DFA A′ obtained from A by
making q its initial state and by removing all transitions that do not have infinite capacity
is L. The size of A′ is at most the size of A, and we are done. J

I Theorem 3. Determinization of NCAs involves a blow-up exponential in Q and linear in
c↓.

Proof. The exponential blow-up with respect to Q follows from the known exponential
blow-up in determinization of NFAs [20]. In order to prove the blow-up in c↓, we describe a
family L′n,m, for n,m ≥ 1 of strongly liveness languages such that L′n,m is over the alphabet
Σn = {0, . . . , n}, it can be recognized by a two-state NCA with n transitions with capacity
m. By Lemma 2, the size of a DCA for L′n,m is equal to the size of a DFA for it, which is
at least mn.

Let Ln,m be the language of all words w over {1, . . . , n} such that each letter in {1, . . . , n}
appears in w at most m times (the same language as in the proof of Theorem 1). We define
L′n,m = Σ∗n · 0 ·Ln,m, Clearly, L′n,m is a strongly liveness language, and it can be recognized
by the two-state NCA described in Figure 2.

q0 q1
0, ∞

n, m

2, m1, m

n, ∞

1, ∞0, ∞

...
...

Figure 2 An NCA for L′
n,m.

J

4 Decision Problems

In this section we study the following decision problems for NCAs and DCAs. Below we
also state their known complexity in the traditional setting (see, for example [12]).

The nonemptiness problem: given an automaton A, decides whether L(A) 6= ∅. For both
NFA and DFA, the nonemptiness problem is NLOGSPACE-complete.
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The membership problem: given an automaton A and a finite word w, decide whether
w ∈ L(A). For NFA and DFA, the membership problem is NLOGSPACE-complete and
LOGSPACE-complete, respectively.
The relative nonemptiness problem: given an automaton A and a language L, decide
whether A accepts at least one word from L. The relative nonemptiness problem for an
NFA or a DFA A and a language L given by an NFA or a DFA is NLOGSPACE-complete.

I Theorem 4. The nonemptiness problem for NCAs and DCAs is NLOGSPACE-complete.

Proof. An NCA is nonempty iff there is a simple path from some initial state to some
accepting state. Since the path is simple, capacities do not play a role (beyond exclusion of
transitions with capacity 0). Thus, nonemptiness can be reduced to reachability, implying
membership in NLOGSPACE. The lower bound follows from NLOGSPACE hardness for
DFA emptiness. J

I Theorem 5. The membership problem can be solved in linear time for DCAs and is NP-
complete for NCAs.

Proof. We start with the upper bounds. Given a DCA 〈A, c〉 and a word w, we can trace
the single run of 〈A, c〉 on w and check that it ends in an accepting state and respects c.
When 〈A, c〉 is an NCA, a witness to the membership of w in 〈A, c〉 is an accepting run of
〈A, c〉 on w. As above, it can be checked in linear time.

For NCAs, we prove hardness in NP already for the case |Σ| = 1. We describe a
reduction from the problem of deciding whether a given directed graph has a Hamiltonian
cycle – one that visits all vertices of the graph exactly once. Given a graph G = 〈V,E〉,
we construct the NCA 〈A, c〉 as follows (see an example in Figure 3. The graph G is
on the left, the NCA A is in the middle). Let v1 be some vertex in V . Then, A =
〈{σ}, V × {in,out}, {〈v1, out〉},∆, {〈v1, out〉}〉 is such that each vertex v ∈ V contributes to
∆ the transition 〈〈v, in〉, σ, 〈v, out〉〉 with capacity 1, and each edge 〈u, v〉 in E contributes
to ∆ the transition 〈〈u, out〉, σ, 〈v, in〉〉, again with capacity 1. It is not hard to see that G
has a Hamiltonian cycle iff 〈A, c〉 accepts the word σ2|V |. Indeed, having capacity 1 on the
transitions that correspond to vertices in V guarantees that each vertex is visited at most
once, thus a word of length 2|V | must close a cycle and visits exactly all vertices in G. J

A B

CD

AinAout BinBout

CinCoutDinDout

σ,1 σ,1

σ,1σ,1

σ,1

σ,1

σ,1

σ,1

σ,1

AinAout BinBout

CinCoutDinDout

A,1 B,1

C,1D,1

C,1

A,1

D,1

B,1

C,1

Figure 3 Two reductions from the Hamiltonian cycle problem.

I Theorem 6. The relative nonemptiness problem for NCAs and DCAs relative to languages
given by NCAs, DCAs, NFAs, or DFAs is NP-complete.
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Proof. Consider a capacitated automaton 〈A, c〉 and an automaton U such that we want
to check the nonemptiness of A with respect to L(U). Note that we have eight cases to
consider, reflecting whether A is an NCA or a DCA and whether U is an NCA, DCA, NFA,
or DFA. We prove that all eight cases are NP-complete.

We start with membership in NP for the most general case, where both 〈A, c〉 and
U = 〈A′, c′〉 are NCAs. A witness to the relative nonemptiness is a word w and accepting
runs of 〈A, c〉 and 〈A′, c′〉 on it. The word w does not traverse cycles in the product of A
and A′. It is thus of polynomial length in the product, which is of size |A| · |A′|. Checking
that the runs respect c and c′ can also be done in polynomial time.

We prove hardness in NP for the most restricted case, where 〈A, c〉 is a DCA and U
is a DFA. We describe a reduction from the problem of deciding whether a given directed
graph has a Hamiltonian cycle (see an example in Figure 3. The graph G is on the left,
the NCA A is on the right). Given G = 〈V,E〉 with V = {v1, . . . , vn}, we construct
A = 〈V, V ×{in,out}, {〈v1, out〉},∆, {〈v1, out〉}〉, where v1 is an arbitrary vertex in V . Each
vertex v ∈ V contributes to ∆ the transition 〈〈v, in〉, v, 〈v, out〉〉 with capacity 1, and each
edge 〈u, v〉 in E contributes to ∆ the transition 〈〈u, out〉, v, 〈v, in〉〉 with capacity 1. It is
easy to see that A is indeed a DCA and that G has a Hamiltonian cycle iff A accepts a
word in the language [(v1 · v1) + · · · + (vn · vn)]n, which can be recognized by a DFA with
O(n2) states. In the example, the Hamiltonian cycle ABDCA corresponds to the word
BBDDCCAA. J

5 The Maximum Utilization Problem

A natural problem that arises when reasoning about systems that consist of resources with
limited capacities is to utilize these resources in the best way. In our model, the maximum
utilization problem is defined as follows. Given a CA 〈A, c〉, return a multiset W of words,
such that 〈A, c〉 has enough capacity to mutually accept all the words in W , and |W | is
maximal. We refer to W as an optimal utilization mutiset for 〈A, c〉.

As discussed in Section 1, the max-utilization problem can be viewed as a generalization
of the max-flow problem in a network. The CA model enables a rich description of the
feasible routes. Sometimes, not all the sequences allowed by the CA are desirable. Accord-
ingly, we also consider the max restricted utilization problem, where the input to the problem
also includes a language L, specifying the desirable sequences. Then, the words in the op-
timal utilization multiset must belong to L. In Section 5.1, we show that the unrestricted
max-utilization problem can be solved in polynomial time by a reduction to the classical
network-flow problem [11]. In section 5.2 we study the restricted case and show that adding
restrictions makes the problem much more complex.

5.1 Maximum Unrestricted Utilization
We present an optimal algorithm for the max-utilization problem. The algorithm is based
on a reduction to a max-flow problem in a network. Recall that a max-flow problem is
defined over a flow-network given by a directed graph G = 〈V,E〉, two vertices s, t ∈ V

designated as the source and the target vertices, and a capacity function c that maps each
edge e ∈ E to a positive integral capacity c(e). For a vertex v, let in(v) and out(v) denote
the set of edges into and out of v, respectively. A legal flow is a function f : E → IR such
that for every edge e ∈ E, it holds that 0 ≤ f(e) ≤ c(e), and for every vertex v ∈ V \ {s, t},
it holds that

∑
e∈in(v) f(e) =

∑
e∈out(v) f(e). A max-flow is a legal flow that maximizes the

flow leaving the source, given by
∑
e∈out(s) f(e)−

∑
e∈in(s) f(e).
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I Theorem 7. The max-utilization problem for NCAs and DCAs can be solved in polynomial
time.

Proof. Let 〈A, c〉 be an NCA, with A = 〈Σ, Q,Q0,∆, F 〉. If A has a path from Q0 to F all
whose transitions have infinite capacity (in particular, if Q0 ∩ F 6= ∅), then, as the optimal
utilization multiset is not restricted, so is the max-flow, and we return as a witness the
(possibly empty) word along the above accepting run.

Otherwise, the optimal utilization multiset must be finite and we proceed as follows.
Given 〈A, c〉, we construct a flow-network G = 〈Q ∪ {s, t}, E〉, where every transition
〈p, σ, q〉 ∈ ∆ induces an edge 〈p, q〉 in E with capacity c(〈p, σ, q〉). The set E includes
also the set of edges {s} × Q0 and F × {t}, all with an unbounded capacity. It is easy to
see that a max-flow in G corresponds to a maximal multiset of words that can be mutually
processed by 〈A, c〉. The optimal utilization multiset W can be obtained by tracking the
(s, t)-paths in the max-flow. Note that since there are no restriction on the words in W , the
alphabet in 〈A, c〉 plays no role. J

5.2 Maximum Restricted Utilization
In the max restricted-utilization problem, we are given, in addition to a CA 〈A, c〉, also a
regular language L. The optimal utilization multi set W then has to contain only words
from L. We refer to L as the restricting language.

We present a polynomial-time optimal algorithm for the max restricted-utilization prob-
lem for the case the restricting language consists of words of length at most 2. This is
indeed a very limited class of languages. Yet, it is tight, as we provide an APX-hardness
proof already for the case that 〈A, c〉 is a DCA with c ≡ 1 and the restricting language
consists of words of length 3.

I Theorem 8. When all the words in the restricting language are of length at most 2, the
max restricted-utilization problem can be solved in polynomial time.

Proof. Let 〈A, c〉 be an NCA and L a restricting language all of whose words are of length
at most 2. First, if ε ∈ L(〈A, c〉)∩L, then the optimal utilization multiset is infinite, and we
are done. Hence, we assume that all words in L are of length 1 or 2. We present an optimal
algorithm that is based on reducing the problem to a maximum b-matching problem. An
instance of b-matching consists of an undirected graph G = 〈V,E〉 and a budget function
b : V → IN. A b-matching is an assignment of a non-negative integer weight xe to every
edge e ∈ E, such that for every vertex v ∈ V , the sum of weights on edges incident with v is
at most b(v). The maximum b-matching problem is to find a matching of maximum profit;
that is, max

∑
e xe. The graph G need not be simple. That is, self-loops and parallel edges

are allowed. By [2], the maximum b-matching problem can be solved in time polynomial in
|V | and |E|.

Let A = 〈Σ, Q,Q0,∆, F 〉, and let W1(L) and W2(L) denote the words of length 1 and
2 in L, respectively. For every σ ∈ W1(L), let Aσ ⊆ ∆ be the set of transitions that form
an accepting run on σ in 〈A, c〉. Formally, e ∈ Aσ iff e = 〈q0, σ, p〉 for q0 ∈ Q0, p ∈ F , and
c(e) ≥ 1. For every w = σ1·σ2 ∈W2(L), let Aw ⊆ ∆×∆ be the set of pairs of transitions that
form an accepting run on w inA. Formally, 〈e1, e2〉 ∈ Aw iff e1 = 〈q1, σ1, p1〉, e2 = 〈q2, σ2, p2〉
for q1 ∈ Q0, p1 = q2, p2 ∈ F , c(e1) ≥ 1, and c(e2) ≥ 1. If e1 = e2, then we also require
c(e1) ≥ 2. Note that if w 6∈ L(A), then Ew is empty. Also, if w has several accepting runs
in A, then |Ew| > 1. It is possible to compute the above sets in time O(|Q|2).

We construct an undirected graph G = 〈∆ ∪ {v0}, E〉, where E consists of edges of two
types, defined as follows.
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1. 〈ei, v0〉 ∈ E iff there exists a word σ ∈W1(L) such that ei ∈ Aσ.
2. 〈ei, ej〉 ∈ E iff there exists a word w ∈W2(L) such that 〈ei, ej〉 ∈ Aw.
Every edge of type (ei, v0) corresponds to a 1-letter word. Every edge of type (ei, ej)
corresponds to at least one 2-letter word. Since Q0 may include several initial states, it is
possible that both 〈ei, ej〉 and 〈ej , ei〉 form accepting runs in 〈A, c〉. It is also possible to
have a self-loop in G if A includes a self-loop from the initial state.

An example of the reduction is given in Figure 4. The CA 〈A, c〉 is on the left and the
b-matching instance constructed for L = {a, aa, ab, ac, ba, bc, cc} is on the right. Note that
each of the words a, aa, and ab has two possible accepting runs in 〈A, c〉. Thus, each of these
words induces two edges in G. Words that belong to L \L(〈A, c〉), like ba and cc, as well as
words that belong to L(〈A, c〉) \ L, like b or bb, do not induce an edge in G.

To complete the definition of the b-matching instance, we set the vertex budgets as
follows. For every ei ∈ ∆, we set b(ei) = ci. For v0, we set b(v0) =∞.

a, 3
e1 b, 2

e2

e3

a, 1

b, 2
e4

c, 1
e5

v0, 5
e4, 2

e1, 3

e3, 1

e2, 2

e5, 1
a aa

ab

a ab

ac

bc

aa

Figure 4 An NCA and the b-matching instance constructed for L = {a, aa, ab, ac, ba, bc, cc}.

Consider a feasible b-matching in G. By the construction of G, every edge in E cor-
responds to a word in L(〈A, c〉) ∩ L. The budget constraints on the vertices correspond
to the edge-capacities. Thus, every set of words from L that can be mutually accepted by
〈A, c〉 corresponds to a feasible b-matching in G and vice-versa. In particular, a maximum
b-matching corresponds to an optimal utilization multiset that is contained in L. J

Next, we show that the above is the most positive result we can achieve for the max
restricted-utilization problem. That is, when L may include three-letter words, the max-
utilization problem becomes APX-hard. That is, there exists a constant c such that it is
NP-hard to find an approximation algorithm with approximation ratio better than c.

I Theorem 9. The max restricted-utilization problem is APX-hard. This is valid already
when the restricting language consists only of words of length 3 and a unit capacity DCA.

Proof. We show an approximation-preserving reduction from the maximum 3-bounded 3-
dimensional matching problem (3DM-3). The input to the 3DM-3 problem is a set of triplets
T ⊆ X × Y × Z, where |X| = |Y | = |Z| = n. The number of occurrences of every element
of X ∪ Y ∪ Z in T is at most 3. The number of triplets is |T | ≥ n. The desired output is a
3-dimensional matching in T of maximal cardinality; i.e., a subset T ′ ⊆ T , such that every
element in X ∪ Y ∪ Z appears at most once in T ′, and |T ′| is maximal. Kann showed in
[14] that 3DM-3 is APX-hard.

Given an instance of 3DM-3, we construct a DCA 〈A, c〉, with A = 〈Σ, Q,Q0,∆, F 〉, as
follows. First, Σ = X ∪ Y ∪ Z,Q = {q0, q1, q2, q3}, Q0 = {q0}, F = {q3}. The transition
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relation ∆ consists of 3n transitions all having capacity 1. There are n parallel transitions
〈q0, xi, q1〉 for all 1 ≤ i ≤ n, n parallel transitions 〈q1, yj , q2〉 for all 1 ≤ j ≤ n, and n parallel
transitions 〈q2, zk, q3〉 for all 1 ≤ k ≤ n. The capacity of all transitions is 1.

To complete the reduction, we define the restricting language L = {xi·yj ·zk : 〈xi, yj , zk〉 ∈
T}. Note that the reduction is polynomial. Also, since the 3DM instance is 3-bounded, we
have that |L| = O(n).

Let W ⊆ L be a set of words that can be mutually accepted by A. The unit capacities
imply that every element in X ∪ Y ∪ Z appears in at most one word in W . Thus, every
matching in T corresponds to a possible utilization multiset W . In particular, a maximum
matching corresponds to an optimal utilization multiset for 〈A, c〉, contained in L. J

I Remark. In the weighted max (possibly restricted) utilization problem, there is a profit
function p : Σ∗ → IR that associates profit with each word. The profit function can be
given, for example, by a weighted automaton. The optimal utilization set is now a set
W ⊆ Σ∗ that can be mutually accepted by 〈A, c〉 and for which

∑
w∈W p(w) is maximal. In

the restricted variant, we require W ⊆ L.
Clearly, the lower bounds we prove apply also to the weighted version. As we now show,

the polynomial upper bound for the case of a restricting language that consists only of
words of length at most 2 can be extended to the weighted setting. For that, we also need
a weighted version of the b-matching problem. There, every edge e ∈ E is associated with
a profit p(e), and the maximum b-matching problem is to find a matching that maximizes∑
e p(e)xe. The algorithm in [2] applies also to the weighted variant.
Now, in the algorithm described in the proof of Theorem 8, we define the profits as

follows. For every edge e ∈ E, we set p(e) to be the profit p(w) of the corresponding word.
If e corresponds to two words, w1, w2, then set p(w) = max{p(w1, p(w2)}. J
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