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Abstract. We apply non-cooperative game theory to analyze the
server’s activation cost in real-time scheduling systems. An instance of
the game consists of a single server and a set of unit-length jobs. Every
job needs to be processed along a specified time interval, defined by its
release-time and due-date. Jobs may also have variable weights, which
specify the amount of resource they require. We assume that jobs are
controlled by selfish agents who act to minimize their own cost, rather
than to optimize any global objective.

The jobs processed in a specific time-slot cover the server’s activation
cost in this slot, with the cost being shared proportionally to the jobs’
weights. Known result on cost-sharing games do not exploit the spe-
cial interval-structure of the strategy space in our game, and are there-
fore not tight. We present a complete analysis of equilibrium existence,
computation, and inefficiency in real-time scheduling cost-sharing games.
Our tight analysis covers various classes of instances, and distinguishes
between unilateral and coordinated deviations.

1 Introduction

The emergence of cloud systems as a common computation resource gives rise to
plenty of optimization problems whose input is a real-time scheduling instance,
consisting of time-sensitive jobs which are often business-critical. Each job needs
to be processed along a specified time interval, defined by its release-time and
due-date. Jobs may also have variable lengths and weights, corresponding to
their resource demand [10,11,26,30].

Traditional research interest in cluster systems has been high performance,
such as high throughput, low response time, or load balancing [10,30]. In this
paper we apply non-cooperative game theory to study the problem of minimizing
the server’s activation cost, a recent trend in cluster computing which aims at
reducing power consumption (see, e.g., [4,14,28]).

The jobs should be processed by a server available during the whole schedule.
We assume that time is slotted, and a job needs to be processed along one time-
slot in order to be completed. For every time-slot, we are given the server’s cost
for this slot. The server has unlimited capacity, and the cost is independent
of the load (as long as it is non-zero). In other words, the cost is associated
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with activating the server. This scenario arises in cloud computing management,
as well as in several applications in media-on-demand systems, optical-network
design, and shuttle services.

As a real-life toy example, consider a big carousel (merry-go-round) in an
amusement park. Rides may start in every quarter of an hour (defining the time
slots), and every operation of the carousel costs a predefined amount, which is
independent of the number of riders. The park attracts many groups of kids
along the day. All the groups would like to have a ride on the carousel during
their visit in the park. The carousel owner would like to schedule the group rides
in a way that minimizes the total activation cost. The carousel’s capacity is not
a problem, as the number of simultaneous visitors in the park never exceeds the
carousel capacity.

In this paper, we analyze the game corresponding to this job-scheduling sce-
nario. We assume that jobs are controlled by selfish agents who act to minimize
their own cost, rather than to optimize any global objective. Thus, each agent
chooses the slot in which its job is processed instead of being assigned to one by
a central authority. Back to our merry-go-round example, in the corresponding
game, every group selects its riding time, with the understanding that groups
riding together share the carousel’s activation cost with the share being propor-
tional to the groups’ sizes.

While game theory has become an essential tool in their study, many real-
world applications do not necessarily fit the basic framework assumed in their
common analysis. In particular, the setting of real-time scheduling induces a
game in which the resources form a line and the strategy space of each player is
defined by an interval in this line. Thus, our paper belongs to the rich literature
on congestion and cost-sharing games with limited strategy space (e.g., matroids,
paths in graphs, etc.). As we show, the strategies’ interval structure induces a
game which is more stable than general singleton cost-sharing games. While
some of our results are simple adaptations of previously studied games, most of
them require different techniques and new tools, that exploit the unique interval-
strategy structure.

1.1 Preliminaries

An instance G of our game consists of a set J of n unit-length jobs, and a single
server. Every job j ∈ J is associated with a time interval, I(j) = [rj , dj), where
rj and dj denote its release-time and due-date. In addition, every j ∈ J has a
weight wj > 0.

Let T = maxj∈J dj be the maximal deadline of a job. We assume that the
server is available along the interval [0, T ). Time is slotted, and a job can start
its processing only at integral time points. For t = 1, . . . , T we refer to [t − 1, t)
as the t-th slot. Let ct denote the activation cost of the server in slot t.

A schedule S determines for every job j the time slot sj in which it is pro-
cessed, such that [sj −1, sj) ⊆ I(j). We say that the server is busy at time-slot t if
it processes at least one job in slot t. Otherwise, the server is idle at time t. Every
feasible schedule S corresponds to a profile of the game. For a profile S, the load
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on slot t is denoted ℓt(S) and is given by the total weight of jobs processed in
slot t. That is, ℓt(S) =

∑

j|sj=t wj . The jobs processed in slot t share the server’s
activation cost ct in a way proportional to the load they generate, given by their
weights. Formally, the cost of job j in a profile S is costj(S) = wj · csj

/ℓsj
(S).

The total cost of a schedule is cost(S) =
∑

j∈J costj(S). Note that cost(S) also
equals the total activation cost of non-idle slots, that is, cost(S) =

∑

t|ℓt(S)>0 ct.
This cost-sharing scheme fits the commonly used proportional cost-sharing rule
for weighted players (e.g., [6,9,22,32]), when the cost of a resource splits among
its users proportional to their demand.

For a profile S, a job j ∈ J , and a slot s′
j ⊆ I(j), let (S−j , s

′
j) denote the

profile obtained from S by replacing the strategy of job j by s′
j . That is, the

profile resulting from a migration of job j from slot sj to slot s′
j . A profile S is

a pure Nash equilibrium (NE) if no job can benefit from unilaterally deviating
from his strategy in S to another strategy; i.e., for every job j and every slot
s′

j ⊆ I(j) it holds that costj(S−j , s
′
j) ≥ costj(S).1

Best-Response Dynamics (BRD) is a local-search method where in each step
some player is chosen and plays its best improving deviation (if one exists), given
the strategies of the other players. Since BRD corresponds to actual dynamics
in real-life applications, the question of BRD convergence and the quality of
possible BRD outcomes are major issues in the study of resource allocation
games in applied systems.

It is well known that decentralized decision-making may lead to sub-optimal
solutions from the point of view of the society as a whole. For a game G, let
P (G) be the set of feasible profiles of G. We denote by OPT (G) the cost of a
social optimal (SO) solution; i.e., OPT = minS∈P (G) cost(S). We quantify the
inefficiency incurred due to self-interested behavior according to the price of

anarchy (PoA) [29] and price of stability (PoS) [6] measures. The PoA is the
worst-case inefficiency of a pure Nash equilibrium, while the PoS measures the
best-case inefficiency of a pure Nash equilibrium. Formally,

Definition 1. Let G be a family of games, and let G be a game in G. Let Υ (G)
be the set of pure Nash equilibria of the game G. Assume that Υ (G) �= ∅.

– The price of anarchy of G is the ratio between the maximal cost of a NE and
the social optimum of G. That is, PoA(G) = maxS∈Υ (G) cost(S)/OPT (G).
The price of anarchy of the family of games G is PoA(G) = supG∈GPoA(G).

– The price of stability of G is the ratio between the minimal cost of a NE and
the social optimum of G. That is, PoS(G) = minS∈Υ (G) cost(S)/OPT (G).
The price of stability of the family of games G is PoS(G) = supG∈GPoS(G).

A firmer notion of stability requires that a profile is stable against coordinated

deviations. A set of players Γ ⊆ J forms a coalition if there exists a joint move
where each job j ∈ Γ strictly reduces its cost. When BRD is applied with

1 Throughout this paper, we consider pure strategies, as is the case for the vast lit-
erature on cost-sharing games. Unlike mixed strategies, pure strategies may not be
random, or drawn from a distribution.

tami@idc.ac.il



426 T. Tamir

coordinated deviations, in every step some coalition performs a joint beneficial
move. A profile S is a Strong Equilibrium (SE) if there is no coalition Γ ⊆ J that
has a beneficial joint move from S [7]. The strong price of anarchy (SPoA) and
the strong price of stability (SPoS), introduced in [5], are defined similarly to the
PoA and PoS in Definition 1, where Υ (G) refers to the set of strong equilibria.

1.2 Related Work

This paper links two well-studied areas (i) cost-sharing games, and in particular
cost-sharing games with singleton strategies, and (ii) real-time scheduling, and
in particular efficient energy allocation. Each of these areas has been widely
studied. We survey below the papers we find most relevant to our work.

Game-theoretic analysis became an important tool for analyzing systems
that are controlled by users with strategic consideration. In particular, systems
in which a set of resources is shared by selfish users. Congestion games [12,
29,32] consist of a set of resources and a set of players who need to use these
resources. Players’ strategies are subsets of resources. In cost-sharing games, such
as network formation games, each resource has an activation cost that is shared
by the players using it according to some sharing mechanism. With unit-weight
players and uniform cost-sharing, this is a potential game, a NE exists and the
PoS is logarithmic in the number of players [6]. On the other hand, Weighted

cost-sharing games, with proportional cost-sharing need not have a pure NE and
the PoS may be as high as the number of players [6,16].

The paper [33] studies the complexity of equilibria in a wide range of cost-
sharing games. The results on singleton cost-sharing games correspond to our
model with unit-weight jobs. Other related work studies the impact of the strate-
gies’ combinatorial structure [1,17,25]. In a more general setting, players’ strate-
gies are multisets of resources. Thus, a player may need multiple uses of the same
resource and his cost for using the resource depends on the number of times he
uses the resource [8]. Job scheduling on unrelated machines is a special case of
this class [9].

Variants of cost-sharing games have been the subject of extensive research. It
is well-known that games with player-specific costs [31] as well as other sharing
variants need not have a NE. Another line of research study the effect of different
cost-sharing mechanisms on the equilibrium inefficiency [16,20,23,24]. A lot of
attention has been given to scheduling congestion games (e.g., [18,34]), which
can be thought of as a special case of weighted congestion games with singleton
strategies. The paper [21] provides bounds on the PoS for singleton congestion
games, with weighted and unweighted players.

The SPoA and SPoS measures were introduced by [5], which study a schedul-
ing game, with the goal of minimizing the cost of the highest paying player. The
SPoA and SPoS were studied also for job scheduling on unrelated machines [9],
and for network formation games [3,5].

To the best of our knowledge, none of the above rich literature on job-
scheduling games consider the special structure of players’ strategies in the set-
ting of real-time scheduling.

tami@idc.ac.il



Cost-Sharing Games in Real-Time Scheduling Systems 427

There is a wide literature also on real-time scheduling, either on a single or
on parallel machines (see surveys in [14,26]). All previous work on real-time
scheduling consider systems controlled by a centralized authority determining
the jobs’ assignment. We are not aware of any results in which this setting is
analyzed as a non-cooperative game. When the server has a limited capacity,
and jobs have variable weights, many problems such as minimizing the number
of late jobs, or minimizing the servers’ busy time are NP-hard, even with unit-
length jobs [4,13]. On the other hand, with unit-weight unit-length jobs, these
problems are polynomially solvable [10,14]. The papers [19,28] provide constant
approximation algorithms for the minimum busy-time problem with variable-
length, variable-weight jobs.

1.3 Our Results

We provide a complete analysis of equilibrium existence, computation, and
inefficiency in real-time scheduling cost-sharing games. Our analysis distin-
guishes between instances with unit slot-activation costs, in which ct = 1 for
all 1 ≤ t ≤ T , and instances with unit job-weights, in which wj = 1 for all j ∈ J .
Specifically, we analyze the following four classes of games:

G1,1 = {games with unit slot-activation costs and unit job-weights}.
G1,v = {games with unit slot-activation costs and variable job-weights}.
Gv,1 = {games with variable slot-activation costs and unit job-weights}.
Gv,v = {games with variable slot-activation costs and variable job-weights}.

We first show that, independent of the instance class, any application of
best-response dynamics, of unilateral or coordinated deviations, converges to a
NE or a SE, respectively. Also, a SE can be computed efficiently. In addition,
PoS(G1,v) = 1 and for this class we present an O(n2)-time algorithm for comput-
ing, for any G ∈ G1,v, a NE profile S⋆ such that cost(S⋆) = OPT (G). This result
heavily exploits the interval-structure of the players’ strategy space, and is in
contrast to other singleton cost-sharing games, in which computing an optimal
stable solution in NP-hard, even with unit-weight players [15]. The guaranteed
existence of a SE is in contrast to other singleton cost-sharing games in which
a SE may not exist [9]. Finally, we present an O(n2 + T )-time algorithm for
computing a social optimum profile for general instances.

In Sect. 3 we consider instances with unit slot-activation costs. While in many
singleton cost-sharing games, PoA = n even with unit-weight players, unit-cost
resources, and a restricted strategy space [6,9], the PoA in our game is only
Θ(

√
n) with unit job-weights, and n/2 + 1 with variable job-weights, and its

unique analysis relies on the interval-structure of the strategies.
In Sect. 4 we study instances with variable slot-activation costs. The bad news

is that the limited strategy-structure does not help in reducing the PoA. That
is, the PoA may be as high as the number of players, n, even if maxt ct/mint ct

is arbitrarily close to 1. On the other hand, while in other singleton unweighted
cost-sharing games PoS = Ω(log n) [6], we show that PoS(Gv,1) is the constant 8

3 .
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Moreover, when combined with our algorithm for computing a social optimum,
the PoS upper-bound proof is constructive.

Our results for the equilibrium inefficiency with respect to unilateral devia-
tions are summarized in Table 1. All the bounds specified in the table are tight,
and all PoS upper bounds are constructive, that is, for each of the four classes we
present an algorithm for computing a NE whose cost is at most PoS(G)·OPT (G).

Table 1. Our results for equilibrium inefficiency with respect to unilateral deviations.

Slot-activation costs Job-weights Pure Nash Equilibrium

PoS PoA

Unit Unit 1
√

4n + 1 − 1

Variable 1 n/2 + 1

Variable Unit 8/3 n

Variable n n

In Sect. 5 we study the equilibrium inefficiency with respect to coordinated
deviations. By definition, for every game G, PoA(G) ≥ SPoA(G) ≥ SPoS(G) ≥
PoS(G). For instances with variable slot-activation costs, and variable job-
weights, our analysis for unilateral deviations implies that all four measures
are as high as the number of jobs.

For instances with unit slot-activation costs, our analysis of coordinated devi-
ations is more positive and a bit surprising – showing no difference between unit
and variable job-weights, and no difference between the worst and best strong
equilibrium. Specifically, we show that SPOA(G1,v) = SPOS(G1,1) and both
measures are a constant – arbitrarily close to 2. Combined with our convergence
proof, we conclude that natural dynamics, even with coordinated deviations
allowed, are guaranteed to converge to a solution whose cost is less than 2OPT .
This result distinguishes our game from other games in which the strong price
of anarchy was analyzed and shown to be either equal to the PoS (O(log n) in
network formation games, and O(n) in scheduling on unrelated machines) or to
1 (single-source connection games) [2,5].

In general, our results show that games in which the players’ strategies have
an interval structure, are more stable than general singleton cost-sharing games,
the loss due to selfish behavior is smaller, and it is possible to compute efficiently
a stable and optimal or close to optimal solutions. We conclude in Sect. 6 with
some open problems and directions for future work. Due to space constraints,
some of the proofs are omitted.

2 Equilibrium Existence and Computation

In this section we study the stability of real-time scheduling games. We first
show that any application of best-response dynamics, with unilateral or coordi-
nated deviations, converges to a NE or a SE, respectively. We then present an
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O(n2) algorithm for calculating a strong equilibrium. Both results are valid for
general instances – with variable slot-activation costs and variable job-weights.
The algorithm generalizes an algorithm from [33] for finding a NE in unweighted
singleton games.

Theorem 1. For every G ∈ Gv,v, any application of BRD, with unilateral or

coordinated deviations, converges to a NE or a SE, respectively.

Theorem 2. For every G ∈ Gv,v, a strong equilibrium exists, and can be com-

puted efficiently.

We turn to consider the class G1,v. We show that for any G ∈ Gv,1, a NE
assignment whose cost equals the social optimum exists, and can be computed
in time O(n2).

Theorem 3. PoS(G1,v) = 1, and for every G ∈ G1,v, a NE whose cost is

OPT (G) can be computed efficiently.

Proof. We present an optimal algorithm that computes a NE solution whose
cost is OPT (G). It consists of two phases: In the first phase, a social optimum
solution, S⋆, is computed. This solution is not necessarily a NE. In the second
phase, the jobs are assigned in the busy slots of S⋆, such that the resulting
schedule is stable.

Algorithm 1. Computes a NE schedule of cost OPT (G) for G ∈ G1,v

1: Sort the jobs such that d1 ≤ d2 ≤ · · · ≤ dk

2: while there are unassigned jobs do

3: Let j be the next unassigned job. Activate slot dj and assign every job k such
that dj ⊆ Ik in slot dj .

4: Remove the assigned jobs from the instance.
5: end while

6: Let b1, . . . , bm be the set of slots in which the server is busy.
7: Remove all the jobs from the server and reassign them as follows:
8: while there are unassigned jobs do

9: For every slot bi, let A(bi) be the total weight of jobs for which bi ⊆ Ij .
10: Let i⋆ = arg mini cbi

/A(bi).
11: Assign all jobs j for which bi⋆ ⊆ Ij in slot bi⋆ .
12: Remove the assigned jobs from the instance.
13: end while

The proof of the algorithm combines two claims. The first claim, whose proof
is based on an exchange argument, shows that the number of slots open during
the first phase is minimal. The second claim refers to the stability of the schedule
produced in the second phase.

The first phase can be implemented in linear time after the jobs are sorted by
due-dates and release-times, and it therefore takes O(n log n). The calculation
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and the updates of A(bi) take O(n2). Thus, the time complexity of Algorithm1
is O(n2) and is independent of T .

Note that the resulting schedule does not produce a strong equilibrium. In
Sect. 5 we show that SPOS = 2. Specifically, Algorithm1 fails when coordinated
deviations are allowed, since moving to an idle slot may be beneficial for a
coalition, but never for a single job.

Finally, we consider the problem of computing a (not necessarily stable) social
optimum profile for instances with variable activation costs.

Theorem 4. For every G ∈ Gv,v, a profile whose cost is OPT (G) can be com-

puted efficiently.

Proof. Let G ∈ Gv,v. Since the server’s capacity on each slot is not limited, the
social optimum is independent of the jobs’ weights. Also, we assume that for
every two jobs j1, j2 it holds that if rj1 < rj2 then dj1 ≤ dj2 . In other words, no
interval is contained in another (such an instance is commonly denoted proper).
This assumption is w.l.o.g, since if I(j2) ⊆ I(j1), then j1 can be removed from
the instance, and be assigned in j′

2s slot once the assignment is done.
By the above, the jobs in J can be sorted such that r1 ≤ · · · ≤ rn and

d1 ≤ · · · ≤ dn. Our algorithm is based on dynamic programming. For every
j1 ≤ j2, let

α(j1, j2) =

{

mint∈{rj2
+1,...,dj1

}ct if rj2 < dj1

∞ otherwise

In words, α(j1, j2) is the cost of a cheapest slot in I(j1) ∩ I(j2). After the table
α is computed, the algorithm advances by computing for every 1 ≤ j ≤ n the
minimal cost C(j) of an assignment of jobs 1, . . . , j. The base case is C(0) = 0.
Then, for j = 1, . . . , n, let

C(j) = min
k<j

C(k) + α(k + 1, j).

That is, for every k < j, we consider the cheapest assignment in which the
rightmost busy slot processes the jobs {k + 1, . . . , j}, and select the cheapest
among these candidates. In particular, C(n), is the social optimum.

Standard DP backtracking can be used to retrieve the busy slots (rather
than their costs). The calculation of α(j1, j2) for all 1 ≤ j1 ≤ j2 ≤ n takes time
O(T + n2). Calculating C(j) takes O(j), for a total of O(n2) for the whole table
C. Thus, the total time complexity of the algorithm is O(T + n2).

3 Instances with Unit Slot-Activation Costs

3.1 Unit Job-Weights, Unit Slot-Activation Costs

This section discusses the equilibrium inefficiency of the class G1,1. Being a sub-
class of G1,v, Theorem 3 implies that PoS(G1,1) = 1. We show that the interval-
structure of the players’ strategies, limits the PoA to Θ(

√
n).
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Theorem 5. PoA(G1,1) =
√

4n + 1 − 1.

Proof. We begin with the lower bound. Let n = h2 + h for some integer h. We
present a game G ∈ G1,1 for which OPT (G) = 1 and some NE profile has cost
2h =

√
4n + 1 − 1. An example for n = 20 and h = 4 is presented in Fig. 1. The

game is played over n unit-weight jobs. For i = 0 . . . , h − 1, the set J includes
h − i jobs for which Ij = [i, h + 1). For i = 1, . . . , h, the set J includes i jobs for
which Ij = [h, h + 1 + i).

In our example, the interval of each of the 4 jobs assigned in slot 1 is [0, 5).
Symmetrically, the interval of each of the 4 jobs assigned in slot 9 is [4, 9), and
so on. Note that for all j ∈ J it holds that [h, h + 1) ⊆ I(j), thus, an optimal
solution assigns all the jobs in slot h + 1 (slot 5 in our example). A possible
NE profile S assigns i jobs for i = 1, . . . h, in each of the slots h − i + 1 and
h + i + 1. The profile S is a NE, since jobs can only migrate towards slot h + 1,
that is, to slots with a lower load. Since the server is busy in [0, h) and [h+1, 2h),
cost(S) = 2h and the PoA bound follows.

0     1      2     3      4      5     6      7     8     9

Fig. 1. A NE achieving
PoA =

√
4n + 1 − 1 = 8 for n = 20

unit-weight jobs. The jobs’ intervals
are shown above the schedule.

a
1

a
3

a
4

b
1

b
3

b
4

a
2

b
2

0   1     2   3  4  5 6   

Fig. 2. A NE achieving PoA = n

2
+1 =

5 for n = 8 variable-weight jobs.

For the upper bound, let S⋆ be a social optimum schedule and assume that
cost(S⋆) = m. Let b1 < b2 < ··· < bm be the sequence of slots in which the server
is busy in S⋆. Let S be a NE schedule. Partition the jobs into at most 2m sets
L1, R1, . . . , Lm, Rm, in the following way: For every job j, let s⋆

j ∈ {b1, . . . , bm}
be the slot in which Job j is processed in S⋆, and let sj be the slot in which j
is processed in S. If sj ≤ s⋆

j , then let i be the minimal index such that sj ≤ bi,
and let j ∈ Li. In other words, j belongs to the L-set of the earliest busy slot
in S⋆ that can process it. Symmetrically, if sj > s⋆

j , then let i be the maximal
index such that tj > bi, and let j ∈ Ri. In other words, j belongs to the R-set
of the latest busy slot in S⋆ that can process it. The partition into sets implies
that if j ∈ Li ∪ Ri then Job j can be processed in slot bi, that is, bi ⊆ I(j).

The following observations will be used in our analysis. The structure of S is
sketched in Fig. 3. We first show that the loads on non-idle slots accommodating
jobs from the same set form a strictly decreasing or increasing sequence.
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0           b
1

b
2

b
3

…          b
m

T

L
1 R

1
L
2 R

2 L
3

…

R
m

Fig. 3. The structure of a NE given that in an optimal solution the server is busy in
slots b1, b2, . . . , bm.

Observation 6. In S, if two slots t1 < t2 both accommodate jobs from Li,

then ℓt1(S) > ℓt2(S). If two slots t1 < t2 both accommodate jobs from Ri, then

ℓt1(S) < ℓt2(S).

Proof. Assume by contradiction that in some NE, S, two jobs {j1, j2} ⊆ Li are
processed in different slots, t1 < t2 such that ℓt1(S) ≤ ℓt2(S). Since t1 < t2, we
have that t2 is closer to bi. Since bi ⊆ Ij1 and t1 < t2 ≤ bi, it must be that
t2 ⊆ Ij1 , thus, j1 can migrate to t2 and reduce its cost to 1

ℓt2
(S)+1 < 1

ℓt1
(S) ,

contradicting the stability of S. The analysis for Ri is symmetric (note that the
word ‘symmetric’ is accurate here).

Observation 7. In S, for every 1 ≤ i ≤ m, there is at most one slot in [bi +
1, bi+1) in which jobs from both Ri and Li+1 are processed.

Proof. Assume by contradiction that there are two different slots t1 < t2 in
[bi, bi+1), in which jobs from both Ri and Li+1 are processed. The partition into
sets implies that moving to the right, towards bi+1, is feasible for j ∈ Li+1, and
moving to the left, towards bi, is feasible for every j ∈ Ri. In particular, some
job currently assigned in t2 can migrate to t1 and some job, currently assigned
in t1 can migrate to t2. This implies that S cannot be a NE - as a job from a
least loaded slot among t1 and t2 can perform a beneficial move.

We conclude that S has the following structure: during [0, b1), jobs from
L1 are processed in some slots with decreasing loads. During [b1 + 1, b2), jobs
from R1 are processed in some slots with increasing loads, then a single slot
may process jobs from R1 ∪ L2, and then jobs from L2 are processed in some
slots with decreasing loads. This middle slot with the jobs from R1 ∪ L2 has the
maximal load. The same structure continues until, during [bm + 1, T ) jobs from
Rm are processed in some slots with increasing loads.

In the sequel, we assume that no slot accommodates jobs from both Ri and
Li+1. It can be shown that an instance with such a slot, t, can be replaced by
an instance in which all the jobs processed in t are from Ri (specifically, their
interval is (bi, t]), with the same social optimum and the same worst NE.

Observation 8. If k jobs are assigned on h slots with distinct loads then h ≤
1
2 (

√
8k + 1 − 1).
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Proof. The number of slots is maximized if the loads are 1, 2, . . . , h. Thus, in
order to utilize h slots, at least

∑h

i=1 i = 1
2 (h2 + h) jobs are required, implying

h ≤ 1
2 (

√
8k + 1 − 1).

Let f(k) = 1
2 (

√
8k + 1−1). By Observation 8, and the structure of S, at most

f(L1) slots are busy in [0, b1), at most f(Rm) slots are busy in [bm + 1, T ), and
for every 1 ≤ i < m, at most f(|Ri|) + f(|Li+1|) slots are busy in [bi + 1, bi+1).

Given that OPT = cost(S⋆) = m, the PoA is at most 1
m

∑m

i=1(f(|Li|) +
f(|Ri|)). Since f(k) is convex and

∑m

i=1(|Li| + |Ri|) = n, by Jensen’s inequal-
ity [27], the PoA gets its maximal value when m = 1 and L1 = R1 = n/2. Specif-
ically, for every G ∈ G1,1, we have PoA(G) ≤ 2f(n/2) = 2 · 1

2 (
√

4n + 1 − 1) =√
4n + 1 − 1.

3.2 Variable Job-Weights, Unit Slot-Activation Costs

We turn to analyze instances with variable job-weights. Here again, the PoA is
lower than n - the PoA in general cost-sharing games with singleton strategies,
however, it is still Θ(n).

Theorem 9. PoA(G1,v) = n
2 + 1.

Proof. We begin with the upper bound and show that PoA(G) ≤ n
2 + 1 for

every G ∈ Gv,1. First note that if the social optimum assigns the jobs on two or
more slots, then PoA(G) ≤ n/2 follows form the fact that the maximal cost of
a solution is n. Assume that OPT (G) = 1, and let t be a slot such that t ⊆ I(j)
for every j ∈ J . Assume by contradiction that in some NE profile S, the jobs
are assigned on at least n

2 + 2 slots. This implies that for at least three slots, a
single job is assigned in each of these slots. Moreover, at least two of these three
slots are either in [t − 1, T ), or in [0, t). Assume w.l.o.g., that two jobs j1, j2, are
assigned alone on two different slots t1 < t2 in [0, t). Since slot t is feasible for
both jobs, the job assigned on t1 can join the job on t2. This migration reduces
its cost from 1 to w(j1)/(w(j1) + w(j2)), contradicting the assumption that S is
a NE.

We proceed to prove the lower bound. for every even integer n, we describe a
game G ∈ Gv,1 over n jobs, such that PoA(G) = n

2 + 1. An example for n = 8 is
given in Fig. 2. Let n = 2z. The set of jobs consists of z pairs, a1, b1, . . . , az, bz.
Each of the four jobs a1, b1, a2, b2 has weight 1. For 3 ≤ j ≤ z, w(aj) = w(bj) =
2j−2. The intervals of the jobs are I(a1) = [0, 2) and I(b1) = [1, 2). For 2 ≤ j ≤ z,
Jobs I(aj) = I(bj) = [1, j + 2). Note that for all jobs j ∈ J , [1, 2) ⊆ I(J). Thus,
OPT (G) = 1 is achieved by assigning all the jobs in the single slot [1, 2). A
possible NE leaves slot 2 idle and assigns a1 in slot 1, b1 in slot 3 and for
2 ≤ j ≤ z, Jobs aj and bj are assigned in slot j + 2. We show that S is a NE:
the cost for each of a0 and b0 is 1, however, these jobs cannot join any other job,
as they can only move towards slot 2 which is idle. The other jobs are paired
with an equal-weight job, so each has cost 1/2. These jobs can move towards
slot 2, but each of the busy slots they can move to has load not larger than their
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current pair’s load. Thus, no migration is beneficial, and S is a NE. The social
cost of S is n

2 + 1, implying the lower bound of the PoA.

4 Instances with Variable Slot-Activation Costs

In this section we discuss the equilibrium inefficiency of the classes Gv,1 and Gv,v.
As we show, allowing variable slot-activation costs, may increase significantly
the equilibrium inefficiency, even if maxt ct/mint ct is arbitrarily close to 1. On
the other hand, while the PoS equals O(log n) in other singleton unweighted
cost-sharing games [6], the interval strategy structure of real-time scheduling
game guarantees that with unit-weight players, the PoS is O(1). Moreover, our
proof is constructive. First, a social optimum profile is computed (as shown in
Theorem 4), and then the SO is converted to a stable profile whose cost is at
most 8

3 · OPT (G).

Theorem 10. PoA(Gv,1) = n and PoS(Gv,1) = 8
3 .

Theorem 11. PoA(Gv,v) = n and for every ε > 0, there exists a game G ∈ Gv,v

for which PoS(G) = n − ε.

5 Coordinated Deviations

In this section we study the equilibrium inefficiency with respect to coordinated
deviations. By definition, for every game G, PoA(G) ≥ SPoA(G) ≥ SPoS(G) ≥
PoS(G). For general instances, the following upper bound follows from simple
standard arguments, and the lower bound follows from Theorem11.

Theorem 12. SPoA(Gv,v) < n and for every ε > 0, there exists a game G ∈
Gv,v for which SPoS(G) ≥ n − ε.

For instances with unit slot-activation costs, we showed in Sect. 3 that PoS = 1
and the PoA is Θ(n) or Θ(

√
n) depending on the uniformity of job-weights.

Our analysis of the SPOA and SPOS is therefore a bit surprising - showing
no difference between unit- and variable-weight jobs, and no difference between
the worst and best strong equilibrium. All measures turned out to be the same
constant – arbitrarily close to 2. Formally,

Theorem 13. SPoA(G1,v) < 2, and for every ε > 0, there exists a game G ∈
G1,1 for which SPOS(G) ≥ 2 − ε.

6 Conclusions and Open Problems

In this paper we analyzed, using game theoretic tools, the server’s activation
cost in real-time job-scheduling systems. We showed that the limited interval-
structure of players’ strategies induces a game which is more stable than general
singleton cost-sharing games. Specifically, a strong equilibrium exists even in the
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most general setting, and the equilibrium inefficiency bounds are significantly
lower than in other singleton cost-sharing games with uniform-cost resources
or unweighted players. Our results imply that if the system is controlled by
rational selfish users, then the increase in its activation cost is limited. This
is valid especially if the server’s activation cost does not vary over time, or if
clients have uniform resource demand, and even if users can form coalitions and
coordinate their assignment.

This is the first work that studies real-time scheduling games, and it can be
extended in various directions:

1. Consider games with negative congestion effect. In our setting, the slot-
activation cost is shared by the jobs assigned in it, thus, jobs have an incentive
to join other jobs. Games in which jobs’ costs increases with the congestion
require different analysis.

2. Study games with variable-length jobs, in which every job is associated with
a processing time pj , and should select its processing interval [tj,1, tj,2) ⊆
[rj , dj) such that tj,2 − tj,1 = pj . The cost of processing a job is the total
cost of its process. With variable-length jobs, preemptions may be allowed,
inducing a different game, in which the strategy space of job j consists of all
subsets of size pj of {rj + 1, rj + 2, . . . , dj}.

3. Another interesting direction is to consider systems with limited server’s
capacity. Formally, for a given parameter B, at most B jobs may be pro-
cessed in every slot. In this setting, the cost-sharing mechanism should also
handle the challenge of convergence to a feasible solution.
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