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Abstract Many real-life applications involve systems that change dynamically over

time. Thus, throughout the continuous operation of such a system, it is required

to compute solutions for new problem instances, derived from previous instances.

Since the transition from one solution to another incurs some cost, a natural goal is

to have the solution for the new instance close to the original one (under a certain

distance measure). We study reoptimization problems arising in scheduling systems.

Formally, due to changes in the environment (out-of-order or new machines, modified

jobs’ processing requirements, etc.), the schedule needs to be modified. That is, jobs

might be migrated from their current machine to a different one. Migrations are

associated with a cost – due to relocation overhead and machine set-up times. In

some systems, a migration is also associated with job extension. The goal is to find a

good modified schedule, with a low transition cost from the initial one. We consider

reoptimization with respect to the classical objectives of minimum makespan and

minimum total flow-time. We first prove that the reoptimization variants of both

problems are NP-hard, already for very restricted classes. We then develop and

present several heuristics for each objective, implement these heuristics, compare

their performance on various classes of instances and analyze the results.

1 Introduction

Reoptimization problems arise naturally in dynamic scheduling environments, such

as manufacturing systems and virtual machine managers. Due to changes in the

environment (out-of-order or new resources, modified jobs’ processing requirements,

etc.), the schedule needs to be modified. That is, jobs may be migrated from their

current machine to a different one. Migrations are associated with a cost due to

relocation overhead and machine set-up times. In some systems, a migration is also
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associated with job extension. The goal is to find a good modified schedule, with a

low transition cost from the initial one.

This work studies the reoptimization variant of two classical scheduling prob-

lems in a system with identical parallel machines: (i) minimizing the total flow-

time (denoted in standard scheduling notation by P||ΣCj [15]), and (ii) minimum

makespan (denoted by P||Cmax).

The minimum total flow-time problem for identical machines can be solved effi-

ciently by the simple greedy Shortest Processing Time algorithm (SPT) that assigns

the jobs in non decreasing order by their length. The minimum makespan prob-

lem is NP-hard, and has several efficient approximation algorithms, as well as a

polynomial-time approximation scheme [17]. These algorithms, as many other algo-

rithms for combinatorial optimization problems, solve the problem from scratch, for

a single arbitrary instance without having any constraints or preferences regarding

the required solution - as long as they achieve the optimal objective value. How-

ever, many of the real-life scenarios motivating these problems involve systems that

change dynamically over time. Thus, throughout the continuous operation of such

a system, it is required to compute solutions for new problem instances, derived

from previous instances. Moreover, since the transition from one solution to another

consumes energy (used for the physical migration of the job, for warm-up or set-up

of the machines, or for activation of the new machines), a natural goal is to have

the solution for the new instance close to the original one (under certain distance

measure). Solving a reoptimization problem involves two challenges:

1. Computing an optimal (or close to the optimal) solution for the new instance.

2. Efficiently converting the current solution to the new one.

Each of these challenges, even when considered alone, gives rise to many theoretical

and practical questions. Obviously, combining the two challenges is an important

goal, which shows up in many applications.

1.1 Problem Description

An instance of our problem consists of a set J of n jobs and a set M0 of m0 identical

machines. Denote by pj the processing time of job j. An initial schedule S0 of the

jobs is given. That is, for every machine, it is specified what are the jobs it processes.

At any time, a machine can process at most one job and a job can be processed by at

most one machine. We consider the scenario in which a change in the system occurs.

Possible changes include addition or removal of machines and/or jobs, as well as

modification of processing times of jobs in J . We denote by M the set of machines

in the modified instance and let m = |M|.

Our goal is to suggest a new schedule, S, for the modified instance, with good

objective value and small transition cost form S0. Assignment of a job to a different

machine in S0 and S is denoted migration and is associated with a cost. Formally,

we are given a price list θi,i′,j, such that it costs θi,i′,j to migrate job j from machine i

to machine i′. Moreover, in some systems job migrations are also associated with an
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extension of the job’s processing time. Formally, in addition to the transition costs,

we are given a job-extension penalty list δi,i′,j ≥ 0, such that the processing time of

job j is extended to pj + δi,i′,j when it is migrated from machine i to machine i′.

For a given schedule, let Cj denote the flow-time (also known as ‘completion

time’) of job j, that is, the time when the process of j completes. The makespan of a

schedule is defined as the maximal completion time of a job, that is, Cmax = maxj Cj.

While the schedule does not specify the internal order of jobs assigned to a

machine, we assume throughout this work that jobs assigned to a specific machine

are always processed in SPT-order (Shortest Processing Time), that is, p1 ≤ p2 ≤ . . ..

For a given set of jobs, SPT-order is known to achieve the minimal possible total flow-

time, min
∑

j Cj [9, 25]. Clearly, the internal order has no effect on the makespan.

Given S0, J and M, the goal is to find a good schedule for J that is close to the

initial schedule S0. We consider two problems:

1. Rescheduling to an optimal schedule using the minimal possible transition cost.

2. Given a budget B, find the best possible modified schedule that can be achieved

without exceeding the budget B.

If the modification includes machines’ removal, and the budget is limited, then

we assume that a feasible solution exists. That is, the budget is at least the cost

of migrating the jobs on the removed machines to some machine. Formally, B ≥
∑

j on i∈M0\M mini′∈M θi,i′,j.

Applications: Our reoptimization problems arise naturally in manufacturing sys-

tems, where jobs may be migrated among production lines. Due to unexpected

changes in the environment (out-of-order or new machines, timetables of task

processing, etc.), the production schedule needs to be modified. Rescheduling tasks

involves energy-loss due to relocation overhead and machine set-up times. In fact,

our work is relevant to any dynamic scheduling environment, in which migrations

of jobs are allowed though associated with an overhead caused due to the need to

handle the modification and to absorb the migrating jobs in their new assignment.

With the proliferation of cloud computing, more and more applications are

deployed in the data centers. Live migration is a common process in which a running

virtual machine (VM) or application moves between different physical machines

without disconnecting the client or application [8]. Memory, storage, and network

connectivity of the virtual machine are transferred from the original host machine

to the destination. Such migrations involve a warm-up phase, and a memory-copy

phase. In pre-copy memory migration, the Hypervisor typically copies all the mem-

ory pages from source to destination while the VM is still running on the source.

Alternatively, in post-copy memory migration the VM is suspended, a minimal subset

of the execution state of the VM (CPU state, registers and, optionally, non-pageable

memory) is transferred to the target, and the VM is then resumed at the target. Live

migration is performed in several VM managers such as Parallels Virtuozzo [21] and

Xen [27]. Sequential processing of jobs that might be migrated among several proces-

sors is performed also in several implementations of MapReduce (e.g., [4]), and in

RPC (Remote Procedure Call) services, in which virtual servers can be temporarily

rented [5].
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1.2 Related Work

The work on reoptimization problems started with the analysis of dynamic graph

problems (see e.g. [12, 26]). These works focus on developing data structures sup-

porting update and query operations on graphs. A different line of research, deals

with the computation of a good solution for an NP-hard problem, given an optimal

solution for a close instance. Among the problems studied in this setting are TSP [1,

6] and Steiner Tree on weighted graphs [13].

The paper [24] suggests the framework we adopt for this work, in which the solu-

tion for the modified instance is evaluated also with respect to its difference from the

initial solution. Formally, an algorithm A is an (r, ρ)-reapproximation algorithm if

it achieves a ρ-approximation for the optimization problem, while paying a transition

cost that is at most r times the minimum required for solving the problem optimally.

For this definition, the paper [24] characterizes classes of combinatorial reoptimiza-

tion problems that obey a fully polynomial time (1 + ε1, 1 + ε2)-reapproximation

schemes, and suggest reapproximation algorithms for the metric k-Center problem,

and for subset-selection problems. This framework of reapproximation is in use also

in [23], to analyze algorithms for data placement in storage area network.

Job scheduling reoptimization problems with respect to the total flow-time objec-

tive was studied in [2]. The paper includes optimal algorithms for the problem of

achieving an optimal solution using the minimal possible transition cost. For the

modification of machines’ addition, where jobs are only allowed to migrate to new

machines, an optimal algorithm for achieving the best possible schedule using a

given limited budget is also presented. The paper [3] analyze the problem as a load

balancing game: each job corresponds to a selfish agent, whose cost depends on the

load on the machine it is assigned. Thus, when machines are added, jobs have an

incentive to migrate to the new unloaded machines. When machines are removed,

the jobs assigned to them must be reassigned. Migration is associated with a cost,

taken into account by the agents. The paper [3] analyzes the stability of these games

and the inefficiency caused due to the agents’ selfish behaviour.

Lot of attention, in both the industry and the academia, is given recently to the prob-

lem of minimizing the overhead associated with migrations (see e.g., [8, 16]). Using

our notations, this refers to minimizing the transition costs and the job-extension

penalties associated with rescheduling a job. Our work focuses in determining the

best possible schedule given these costs.

1.3 Our Contribution

Our study includes both theoretical and comprehensive experimental results. We

consider reoptimization with respect to the two classical objectives of minimum

makespan and minimum total flow-time, and distinguish between instances with

unlimited and limited budget. Our results are presented in Table 1. For completeness,

we include in the table previous results regarding the minimum total flow-time with

unlimited budget [2].
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We first analyze the computational complexity status of these problems. While the

hardness result for the minimum makespan problem is straightforward, the hardness

for the minimum total flow-time problem with limited budget is complex and a bit

surprising - given that the minimum flow-time problem is solvable even on unrelated

machines [7, 18], and that the dual variant of achieving an optimal reschedule using

minimum budget is also solvable [2]. Our hardness results, given in Sect. 2 are valid

already for very restricted classes, with a single added machine and no job-extension

penalties. In Sect. 3 we consider the minimum makespan reoptimization problem

assuming that the modification consists of machines’ removal and the budget is the

minimal possible, that is, sufficient only for reassignment of the jobs on the removed

machines. We present tight bounds on our ability to compete against an optimal algo-

rithm with unlimited budget, and present a polynomial time approximation scheme

where the approximation ratio is measured with respect to a solution achieved using

the same minimal budget.

The second part of the paper includes an experimental study of the problem. In

order to be able to evaluate our heuristics against an optimal solution, we develop

and implement an optimal solver based on branch and bound technique. Naturally,

the solver could not handle very large instances, but we were able to run it against

small but diverse instances to compare the different heuristics to the optimum. For

example, problems instances with 4 machines and 20 jobs were easily solved.

We then present several heuristics for each objective function. Some of the heuris-

tics distinguish between modifications that involve addition or removal of machines.

For both objectives we also developed and applied a genetic algorithm [10, 22].

All the heuristics were implemented, their performance on various classes of

instances have been compared, and the results were analyzed. Our experimental

study concludes the paper.

2 Computational Complexity

In this section we analyze the computational complexity of reoptimization scheduling

problems. We distinguish between the minimum makespan and the minimum total

flow problems, as well as between the problem of finding an optimal solution using

minimum budget and finding the best solution that can be obtained using limited

budget.

We use the following notations: For a multiset A = {a1, a2, . . . , a|A|} of integers,

let MAX(A) = max
|A|

j=1 aj and SUM(A) =
∑|A|

j=1 aj. Also, let A denote the vector

consisting of the elements of A in non-decreasing order and define SPT(A) = A ·

(|A|, . . . , 2, 1). For example, for A = {5, 3, 1, 5, 8} it holds that SUM(A) = 22, A =

(1, 3, 5, 5, 8) and SPT(A) = (1, 3, 5, 5, 8) · (5, 4, 3, 2, 1) = 5 + 12 + 15 + 10 + 8 =

50. Note that SPT(A) is the value of an optimal solution for the minimum total-flow

problem on a single machine for an instance consisting of |A| jobs with lengths in A.
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For the minimum makespan reoptimization problem, our result is not

surprising - the classical load-balancing problem P||Cmax is known to be NP-complete

even with no transition costs or extensions. For completeness we show that this hard-

ness carry over to the simplest class of the reoptimization variant.

Theorem 1 The minimum makespan reoptimization problem is NP-complete even

with a single added machine, unlimited budget, and no job-extension penalty.

Proof The reduction is from the Partition problem: given a set A = {a1, a2, . . . , an}

of integers, whose total sum is 2B, the goal is to decide whether A has a subset A′ ⊂ A

such that SUM(A′) = SUM(A \ A′) = B. The Partition problem is known to be NP-

complete [14]. Given an instance of Partition A = {a1, a2, . . . , an}, let Z = SPT(A).

We construct the following instance for the reoptimization problem: The initial sched-

ule S0 consists of a single machine and n jobs having lengths corresponding to the

Partition elements, that is, for 1 ≤ j ≤ n let pj = aj. The modification is simply an

addition of one machine. Clearly, a balanced solution with makespan B exists if and

only if A has a partition.

The analysis of the minimum total flow problem is more involved. The correspond-

ing classical optimization problem P||
∑

Cj is known to be solvable in polynomial

time by the simple SPT algorithm. For the reoptimization problem, an efficient opti-

mal algorithm for finding an optimal solution using minimum budget is presented in

[2]. The algorithm is based on a reduction to a minimum weighted perfect matching

in a bipartite graph. This reduction cannot be generalized to consider instances with

limited budget, and the complexity status of the problem of finding the best solution

that can be obtained using limited budget remains open in [2]. We show that this

problem is NP-complete, even with no job-extension penalties and a single added

machine.

Our proof refers to the compact representation of the problem. In a compact

representation, the jobs assigned on each machine are given by a set of pairs 〈pj, nj〉,

where nj is the number of jobs of length pj assigned on the machine. We first prove

two simple observations:

Observation 2 Let A′ be a subset of A then SPT(A′) + SPT(A \ A′) < SPT(A).

Proof By definition, SPT(A) = A · (|A|, . . . , 2, 1). That is, every element is multi-

plied by its rank in the sorted list. Clearly, for every element in A′, its rank in A′ is

not higher than its rank in A. Similarly, for every element in A \ A′, its rank in A \ A′

is not higher than its rank in A.

Given a multiset A, and an integer Z , let x > MAX(A). Extend A to a multiset A∗

by adding to it Z elements of value x.

Observation 3 SPT(A∗) = Z(Z+1)

2
x + Z · SUM(A) + SPT(A).

Proof Assume w.l.o.g., that A = {a1, a2, . . . , an}, where a1 ≤ a2 ≤ . . . ≤ an. That

is, A∗ = (a1, a2, . . . , an, x, x, . . . , x) with x repeated Z times in the suffix of A.
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By definition, SPT(A∗) = (a1, a2, . . . , an, x, x, . . . , x) · (Z + n, Z + n − 1, . . . , 1).

This dot-product can be divided into two parts to get SPT(A∗) = (a1, a2, . . . , an) ·

(Z + n, Z + n − 1, . . . , Z + 1) + (x, x, . . . , x) · (Z, Z − 1, . . . , 1). It can now be

easily verified that the left component equals Z · SUM(A) + SPT(A) and the right

component equals Z(Z+1)

2
x.

Using the above observations, we are now ready to prove the hardness result.

Theorem 4 The minimum total flow-time reoptimization problem with limited bud-

get is NP-complete even with a single added machine, and no job-extension penalty.

Proof The reduction is from the Partition problem: given a set A = {a1, a2, . . . , an}

of integers, whose total sum is 2B, the goal is to decide whether A has a subset

A′ ⊂ A such that SUM(A′) = SUM(A \ A′) = B. The Partition problem is known to

be NP-complete [14].

Given an instance of Partition A = {a1, a2, . . . , an}, whose total sum is 2B, let

Z = SPT(A). We construct the following instance for the reoptimization problem:

The initial schedule, S0, consists of a single machine and n + Z jobs. The first n jobs

correspond to the Partition elements, that is, for 1 ≤ j ≤ n let pj = aj. Each of the

additional Z dummy jobs have length x for some x > B. Assume that one machine is

added, and that the transition cost of migrating job j from the initial machine to the

new machine is pj. Assume also that the budget is B.

Since the budget is B and each dummy jobs have length more than B, none of

these jobs can be migrated to the new machine. Thus, a modified schedule S is

characterized by a subset A′ ⊂ A of jobs corresponding to the partition elements,

whose total length is at most B. These jobs are migrated to the new machine and

assigned in SPT order on it. The remaining jobs are assigned in SPT order on the

initial machine. Since x is larger than any ai, the Z jobs of length x will be assigned

after the jobs corresponding to A \ A′.

Finally, we note that the reduction is polynomial. Calculating SPT(A) requires

sorting and is performed in time O(nlogn). The instance constructed in the reduc-

tion consists of n + Z jobs where Z = SPT(A). The compact representation of this

instance includes at most n + 1 different pairs, where all 〈pj, nj〉 values are polyno-

mial in n.

claim The minimum total flow-time in an optimal modified schedule is less than
Z(Z+1)

2
x + (B + 1)Z if and only if a partition of A exists.

Proof Assume that a partition exists and let A′ be a subset of A such that SUM(A′)

= SUM(A \ A′) = B. Consider the modified schedule in which jobs corresponding

to the elements of A′ migrate to the new machines. Since the transition cost of job j

equals pj, and SUM(A′) = B, the budget B exactly fits this modification.

Denote by A∗ the multiset produced by adding Z elements of value x to A \ A′.

Note that A∗ is exactly the multiset corresponding to job lengths that remain on the

initial machine. By Observation 3, the total flow-time of the jobs that remain on

the first machines is SPT(A∗) = Z(Z+1)

2
x + Z · SUM(A \ A′) + SPT(A \ A′). Also,
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the total flow-time of the jobs that migrate to the new machine is SPT(A′). Sum-

ming the jobs’ flow-time on the two machines, we get that the total flow-time is
Z(Z+1)

2
x + Z · SUM(A \ A′) + SPT(A \ A′) + SPT(A′). By Observation 2, SPT(A \

A′) + SPT(A′) < SPT(A) = Z . Also, since A′ defines a Partition, it holds that

SUM(A \ A′) = B. We get that the total flow-time is less than Z(Z+1)

2
x + ZB + Z =

Z(Z+1)

2
x + (B + 1)Z .

For the other direction of the reduction proof, assume that a partition of A does not

exist. This implies that the budget B cannot be fully exploited and thus, the set A′′ of

jobs migrating to the new machine includes jobs of total length strictly less than B.

Thus, the set A \ A′′ of jobs that remain on the initial machine has total length at least

B + 1. By Observation 3, the total flow-time of the jobs that remain on the initial

machines is at least Z(Z+1)

2
x + Z · (B + 1) + SPT(A \ A′′). The total flow-time of the

jobs on the new machine is SPT(A′′). Since SPT(A \ A′′) + SPT(A′′) > 0, we get that

if a partition does not exist, then the total flow-time is more than Z(Z+1)

2
x + Z · (B + 1)

as required.

The above claim completes the hardness proof.

Remark It is possible that two multisets A, B will have the same cardinality, and

that SUM(A) > SUM(B) while SPT(A) < SPT(B). For example, for A = {1, 2, 10}

and B = {3, 4, 5}, we have |A| = |B| = 3, SUM(A) = 13 > 12 = SUM(B) while

SPT(A) = 15 < 24 = SPT(B). This emphasis an additional challenge of the reopti-

mization problem: an optimal solution may not use the whole budget. Such anomalies

also explains why our hardness proof cannot be a simple reduction from the subset-

sum problem, and the dummy jobs are required.

3 Approximation Algorithms for Machines’ Removal

and Minimum Budget

In this section we consider the minimum makespan reoptimization problem assuming

that the modification consists of machines’ removal and the budget is the minimal

possible, that is, sufficient only for reassignment of the jobs on the removed machines.

Recall that M0 is the set of machines in the initial instance, M is the set of machines in

the modified instance, and let M ′ = M0 \ M be the set of removed machines. Denote

m0 = |M0|, m = |M|, and m′ = |M ′|. We assume that the cost and the extension

penalty for migrating a job j is independent of the target machine, that is, for all

j, and all i′, it holds that θi,i′,j = θi,j and δi,i′,j = δi,j. The given budget is exactly

Bmin =
∑

j on machine i∈M ′ θi,j. Denote by OPT(Bmin) the minimum makespan that

can be achieved using this minimal budget, and let OPT(B∞) denote the minimum

makespan that can be achieved using unlimited budget. We first analyze the ratio

OPT(Bmin)/OPT(B∞). Note that OPT(B∞) refers to a schedule that can assign

‘from scratch’ all the jobs in J , independent of their original machines. Clearly, if S0

is far from being optimal, then we cannot expect to be competitive against unlimited

budget. The following theorem provides tight analysis of the minimal r, such that

stefka@parallel.bas.bg



216 E. Iwanir and T. Tamir

if S0 is an r-approximation, then OPT(Bmin)/OPT(B∞) ≤ r. Let Cmax and C∗(S0)

denote the makespan and the minimal possible makespan respectively, of the initial

instance S0.

Theorem 5 For every instance, and every number of initial and removed machines,

if Cmax(S0) ≤ (2 − 1
m
)C∗(S0), then OPT(Bmin)/OPT(B∞) ≤ 2 − 1

m
.

Proof We show that this bound is achieved by a simple List-Scheduling method.

Specifically, the jobs on M ′ are considered in arbitrary order; each job is assigned on

a machine in M with minimal load. Ties are broken arbitrarily.

For every job j assigned to machine i ∈ M ′, let p′
j = pj + δi,j. Note that p′

j is the

processing time of job j after its migration - independent of the target machine. Let

CLS(S) be the makespan of the resulting assignment, and let Jk , of length pk (including

the extension penalty), be the job determining the makespan. If Jk was on M before

the modification, then the makespan was not increased due to the migrating jobs, and

CLS(S) = Cmax(S0) ≤ (2 − 1
m
)C∗(S0) ≤ (2 − 1

m
)C∗(S). The last inequality follows

from the fact that C∗(S0) ≤ C∗(S), as S is a schedule of the same set of jobs on fewer

machines.

Assume Jk was migrated from some removed machine. As all machines are busy

at time CLS(S) − pk , it holds that
∑

j pj ≥ (m − 1)(CLS(S) − pk) + CLS(S). There-

fore, CLS ≤ 1
m

∑

j pj + pk
m−1

m
. Clearly, C∗(S) ≥ 1

m

∑

j pj, and C∗(S) ≥ pk . There-

fore, CLS(S) ≥ OPT(Bmin) ≥ OPT(B∞).

The above analysis is tight as demonstrated in Fig. 1. This tight bound is identical

to the tight bound of the analysis of List-Scheduling. For any number of machines

m0, the initial schedule is depicted in Fig. 1a. Assume m′ = 1, that is, m0 = m +

1. Each of the remaining m machine is assigned m − 1 unit-length jobs, and the

removed machine is assigned one job of length m, that should be migrated. If the

budget is sufficient only for migrating the job on the removed machine, then the

schedule depicted in Fig. 1b is optimal and OPT(Bmin) = 2m − 1. On the other hand,

if additional jobs may be migrated, then, as shown in Fig. 1c, OPT(B∞) = m. The

ratio is 2 − 1
m

.

(a)

m
0

m

(b) (c)
1 1 1

1 1 1

1 1 1

1 1 1

m

1 1 1

1 1 1

1 1 1

1 1 1 m

1 1 1

1 1 1

1 1 1 1

1

1

m

m-1

m

Fig. 1 a An initial schedule, b An optimal reschedule with minimal budget. Cmax = 2m − 1, c An

optimal reschedule with unlimited budget, Cmax = m
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We note that this example can be generalized to any number m′ of removed

machines – by assigning them jobs of length ε → 0 in the initial schedule. This

example also demonstrates that even if S0 is optimal, a minimal budget cannot guar-

antee approximation ratio better than 2 − 1
m

.

The above bound suggests that the performance of a reapproximation algorithm

should not be measured compared to an algorithm with unlimited budget, but com-

pared to an algorithm with unlimited computational power and the same budget.

We present a polynomial time approximation scheme (PTAS) for this measure. For-

mally, for any instance S0, and any given ε > 0, our algorithm calculates a reas-

signment S of the jobs on the removed machines, using budget Bmin, such that

Cmax(S) ≤ (1 + ε)OPT(Bmin).

We reduce the reapproximation problem to the minimum makespan problem with

processing set restrictions [20]. In this scheduling problem, each job j is associated

with a subset P(j) of the machines on which it can be processed. The paper [11]

presents polynomial time approximation schemes for several variants of this problem,

in particular, the one we use below. The idea of our algorithm is to glue, for every

machine i ∈ M, all the jobs assigned to machine i in S0 into a single job. This job must

be assigned to its original machine in S0, while the migrating jobs are not limited in

their processing set.

Clearly, every valid schedule of the instance constructed in Step 3 corresponds to

a modified schedule in which the only migrating jobs are the jobs from the removed

machines. We can therefore use as a black-box the PTAS of [11] to conclude:

Theorem 6 For any ε > 0 and any instance of removed machines, Algorithm 1

uses budget Bmin and produces an assignment S such that Cmax(S) ≤ (1 + ε)

OPT(Bmin).

Algorithm 1 PTAS for machines’ removal and minimum budget

1: For every job assigned to a removed machine i ∈ M ′, let p′
j = pj + δi,j .

2: Let ℓ0(i) be the load on machine i ∈ M in S0, that is, the total length of jobs assigned to machine

i before the modification.

3: Construct an instance for the minimum makespan problem with m identical machines and the

following jobs and processing restrictions:

• Every job j assigned to a removed machine i in S0 contributes one job of length p′
j , for which

P(j) = M.

• Every machine i ∈ M contributes one job of length ℓ0(i), for which P(j) = {i}.

4: Run a PTAS for the minimum makespan problem with processing set restrictions [11] on the

resulting instance, and the given parameter ε > 0.
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4 Optimal Algorithms

4.1 A Brute-Force Solver Based on Branch and Bound

Our brute-force solver was designed to utilize high performance multi-core machines

in order to find optimal solutions for the problems that were shown to be NP-complete.

The solution space for a scheduling problem can be described by a tree of depth

n, where depth k corresponds to the assignment of job k, for 1 ≤ k ≤ n. Specifically,

the root (depth 0) corresponds to an empty schedule - none of the jobs were assigned;

at level 1 there are m nodes, representing job 1 being assigned to each of the m

machines. At level k there are mk nodes, corresponding to all possible assignment

of the first k jobs. This implies that the brute-force solver may need to consider mn

assignments find the optimal one.

We note that, as detailed in Sect. 1.1, once the partition of jobs among the machines

is determined, the internal job order on each machine either has no effect on the

solution (in the min Cmax problem), or is the unique SPT-order (in the min
∑

j Cj

problem). Thus, the solution space need not distinguish between assignments with

different internal order of the same set of jobs on every machine.

Obviously, even without considering different internal orders, iterating over all of

the mn configurations is not feasible when dealing with large instances. Our solver

uses a branch and bound technique combined with other optimizations to effectively

trim tree-branches that are guaranteed not to yield an optimal solution.

In particular, the solver keeps in memory the best solution it found so far (its

objective value and its transition cost). When processing a tree node if the already

accumulated transition cost is larger than the budget or if the objective-function value

is larger than the current best, then the solver can safely discard this tree branch as

it is guaranteed not to yield a feasible optimal solution. For partial assignments, the

objective-value is calculated by combining the value (makespan or total flow-time)

of the already assigned jobs, and a lower bound on the yet-to-be-assigned jobs. For

the minimum makespan problem, the lower bound is calculated by assuming perfect

load-balancing (
∑

j pj/m), and for total flow-time the lower bound is calculated by

assuming SPT-order with no job-extension penalties.

In addition, we find out that considering the jobs from longest to shortest, that

is, depth 1 corresponds to the longest job in the initial assignment, etc.) drastically

helps in trimming branches earlier in the process.

The solver was designed to use multi-core machines in order to shorten the run

time, by doing the work in parallel on the different cores. In the heart of the design

stands a concurrent queue to which tasks are enqueued. Different threads concurrently

dequeue these tasks, in a consumer-producer like mechanism. A ‘task’ for that matter

is a request to process a tree node. That is, when the solver starts the queue is empty

and a task to process the root node is added, which ignites the process. The solver is

done when the queue is empty.

The solver’s ability to solve problems instances of different sizes is determined

by the given machine, to be more specific, by the CPU’s clock speed, the number
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of available cores and sufficient memory (as the entire process is in memory). For

example, the solver was able to handle a problem with 9 machines and 20 jobs in

about 100 minutes, when ran on a machine with 8 cores and 32GB of RAM memory.

4.2 An Optimal Algorithm for ΣjCj

An algorithm for finding an optimal reschedule with respect to the minimum total

flow-time objective is presented in [2]. The algorithm returns an optimal modified

schedule using the minimal possible budget. The algorithm is based on reducing

the problem to a minimum-weight complete-matching problem in a bipartite graph.

The algorithm fits the most general case - arbitrary modifications, arbitrary transition

costs and arbitrary job-extension penalties.

We have implemented this algorithm, and use its results as a benchmark so

we can evaluate how well our heuristics perform. The algorithm is based on match-

ing the jobs with possible slots on the machines. For completeness, we give here

the technical details that are relevant to its implementation. Recall that n and m

represent, respectively, the number of jobs and machines in the modified instance.

Let G = (V, E), where V = J ∪ U . The vertices J correspond to the set of n jobs

(a single node per job). The set U consists of mn nodes, qik , for i = 1, . . . , m and

k = 1, . . . , n, where node qik represents the kth from last position on machine i.

The edge set E includes an edge (vj, qik) for every node in J and every node in U

(a complete bipartite graph). The edge weights consist of two components: a domi-

nant component corresponding to the contribution of a job assigned in a specific posi-

tion to the total flow-time, and a minor component corresponding to the associated

transition cost. Both components are combined to form a single weight. Formally,

for a large constant Z ,

• For every job that is assigned to i in S0, let w(vj, qik) = Zkpj.

• For every i′ = i, let w(vj, qi′k) = Zk(pj + δi,i′,j) + θi,i′,j.

These weights are based on the observation that a job assigned to the k-th from last

position, contributes k times its processing-time to the total flow-time (see details in

[2]). We implemented the algorithm by using the Hungarian method [19], a combina-

torial optimization algorithm that solves the assignment problem in polynomial time.

The solver’s run time is O(|V |3), where |V | = n(m + 1). In practice, this optimal

solver can easily handle instances with 30 machines and 300 jobs.

5 Our Heuristics

In this section we describe the heuristics we have designed and implemented. Some

heuristics were designed for specific modification (e.g. machines removal, limited

budget), or for specific objective function, while some are general and fit all our

reoptimization variants.
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5.1 Heuristics for Minimum Makespan

We suggest two greedy heuristics, both intended to solve the minimal makespan prob-

lem (min Cmax). In the first, we select the next migration to be performed according

to the job’s processing times, while in the second, we select the next migration

according to the loads on the machines. Both algorithms begin with S0 as the ini-

tial configuration. If the modification involves machines’ removal, we first perform

migrations of jobs assigned to the removed machines and migrate each such job j

assigned to a removed machine i, to a machine i′ ∈ M for which θi,i′,j is minimal.

Ties are broken in favor of short extension penalty. As mentioned in the introduction,

we assume that the budget is sufficient for this reschedule, as otherwise no feasible

solution exists. Following the above preprocessing, we perform the following:

1. LPT-Based: In every iteration we consider the jobs in non-increasing processing-

time order. When considering job j, we check whether migrating it to one of the two

least loaded machines increases the load-balancing, formally, assume j is assigned to

machine i, and we consider moving it to machine i′, we check whether pj + θi,i′,j +

Li′ < Li. If the answer is positive and the remaining budget allows, the migration

is performed. We repeat the iterations until a complete pass over the jobs yields no

migration.

2. Loads-Based: In every iteration we try to migrate some job out of the most loaded

machine. We first consider the pair of most-loaded and least-loaded machines. Denote

these machines by i and i′. We consider jobs on machine i according to order θi,i′,1 ≤

θi,i′,2 ≤ . . .. When considering job j we check whether migrating it to machine i′

increases the load-balancing, that is, pj + θi,i′,j + Li′ < Li. If the answer is positive

and the remaining budget allows, the migration is performed, and a new iteration

begins (maybe with a different pair of most- and least-loaded machines). If the answer

is negative for all the jobs on i, we move to the next candidate for target machine

i′ - the second least-loaded machine, etc. The iteration ends when some beneficial

migration from the most-loaded machine is detected. If none such migration exists,

the algorithm terminates.

5.2 Heuristics for Minimum Total Flow-Time

The minimum total flow-time reoptimization problem can be solved optimally assum-

ing unlimited budged. While the optimal algorithm presented in Sect. 4.2 solves opti-

mally the ΣjCj problem using the minimal possible budget, it cannot be modified to

solve the problem when the budget is limited. In fact, as shown in Sect. 2, this variant

is NP-hard. We propose two heuristics that use the optimal algorithm as a first step

and then each, in its own way, change the assignment to reach a feasible solution

which obeys the budget constraints. A third algorithm that we propose, tries to reach

an SPT-like schedule.
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1. Greedy Reversion: The optimal algorithm returns an assignment S minimizing the

total flow-time, which might not conform to the budget limitation. The following

steps are performed to reach a feasible solution. First, we sort all the jobs which

migrated in the transition from S0 to S in non-increasing order according to the

transition cost their migration caused.

We then distinguish between two cases:

1. The modification consists of only machines’ addition. We revert the transitions

one by one until we reach an allowed budget.

2. The modification includes machines’ removal. We revert the transitions of jobs

which do not originate from a removed machine, one by one until we reach an

allowed budget. If after all possible reverts were done, the budget is still not met,

we continue to the next step: ‘Handling jobs of removed machines’.

Handling jobs of removed machines: This step is performed only when removed

machines are involved, and all the jobs assigned to remaining machines are back

in their initial machines. We sort the jobs originated from removed machines in

non-increasing order according to the transition cost their migration (determined by

the optimal algorithm) caused. Job after job, we migrate a job j assigned in S0 to

a removed machine i ∈ M0 \ M to the machine i′ ∈ M for which θi,i′,j is minimal,

breaking ties in favor of better objective value. As explained in the introduction, we

assume that the budget is sufficient to complete all these migrations.

2. Cyclic Reversion: The optimal algorithm returns an assignment S minimizing

the total flow-time, which might not conform to the budget limitation. Similar to

the previous heuristic, we choose the most expensive transition involved, denote by

j the corresponding job. We migrate job j back to its origin machine, M0,j. Since we

wish to keep jobs distributed as evenly as possible, we now choose a job that migrated

to M0,j and migrate it back to its initial machine. We choose the job whose migration

to M0,j was most expensive. We keep these cyclic reverts until one of following

conditions holds: (a) We made a complete loop and reached back the machine from

which we started. (b) We have reached a machine to which no job was migrated. If

the budget conforms to the limitation, we stop, Otherwise we choose a job with the

most expensive transition cost and start a new revert cycle.

If the modification includes machines’ removal, jobs originated from the removed

machines cannot be selected to migrate back to their original machine. If the budget

is not met after all the allowed reverts were performed, we continue to the step

‘Handling jobs of removed machines’, as described in the greedy heuristic.

3. SPT-like: It is known that SPT ordering is optimal for P||ΣjCj. We therefore try

to reach a schedule that fulfils the following basic properties of an SPT schedule:

1. In any optimal schedule the number of jobs on any machine is either
⌊

n
m

⌋

or
⌈

n
m

⌉

.

2. The jobs can be partitioned into
⌊

n
m

⌋

rounds, such that the k-th round consists of

all the jobs that are k from last on some machine. In an SPT schedule, each of the

jobs in the k-th round is not shorter than each of the jobs in the k + 1st round.
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This heuristic consists of three stages. The first stage, applied when machines were

removed, is to move to some feasible schedule - each of the jobs assigned to a removed

machine, is migrated into a machine for which the transition cost is the lowest.

In the second stage, we try to make the machines as balanced as possible in terms

of number of jobs. While the budget allows and while there exists a pair of machines,

one with more than
⌈

n
m′

⌉

jobs and the other with less than
⌊

n
m′

⌋

jobs, we migrate the

cheapest-to-move job on the first machine, to the second one.

In the third phase, we try to make our solution as close to the SPT ordering as

possible, we compare the solution round after round to the desired SPT ordering,

and switch jobs whenever required, as long as the budget allows.

5.3 Genetic Algorithm

In the Genetic algorithm the idea is for the solution to be obtained in a way that

resembles a biological evolution process [10, 22]. That is, we let the method’s evo-

lutionary process find the solution by itself. The idea is to define the Genome of a

single solution and a Ranking method Rank : Genome → R. The genome of a sin-

gle solution represents and gives all the needed information regarding the solution.

In our case the Genome is simple, for a problem instance with m machines and n

jobs, a solution genome id, g, defined as g = (g1, g2, . . . , gn), where gi ∈ [1, m] and

gi /∈ {x|x is a removed machine id}, in other words each cell with index i represents

the i − th jobs and the cell’s value is the machine this job is assigned to in the modi-

fied schedule. The ranking method is used to define how good is a given solution. In

our case the ranking method sorts the different genomes first by the objective method

value (Cmax or ΣjCj) and then by the transition cost. We create a population (gener-

ation 1), which is a collection of genomes, we rank each member of the population

and sort them from best to worst.

When solving a reoptimization problem with limited budget, to guarantee the

algorithm end up with a feasible solution, we create at least one feasible genome

in generation1. In the case of ‘machines addition’, this solution will be S0 as it is

both valid and requires no transition cost. In the case of ‘machines removal’, a job j

assigned in S0 to a removed machine i ∈ M0 \ M is assigned in the feasible genome

to the machine i′ ∈ M for which θi,i′,j is minimal. We assume that the budget is

sufficient for this reschedule, as otherwise no feasible solution exists.

The next step is the evolutionary-like step, in which we create the next generation

according to the following methods:

1. Elitism mechanism: We take the best 5% genomes and move them ‘as-is’ to the

next generation. This guarantee that the next generation will be at least as good

as the current one. To deal with the case of limited budget, we also pass ‘as-is’

the best solution which meets the given budget. This must be done since the

genetic process is pushing the genomes population for a better objective values

as a primary goal and to minimize the transition cost as a secondary goal.
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2. Cross over: From the entire genomes population, we choose randomly 2 elements,

denoted gx and gy, we choose a pivot point from the range of ind ∈ [1, n − 1],

and create two new items:

newItem1i =

{

gxi
if i ≤ ind

gyi
if i > ind

and

newItem2i =

{

gyi
if i ≤ ind

gxi
if i > ind

43% of the next generation is a result of this operator.

3. Mutate: We choose a random genome, we choose from its genome a random cell

and change its value. 43% of the next generation is a result of this operator.

4. Fresh Items: We generate new genomes. These new elements have the potential

of shifting the results in a new direction and to help avoid local optimum. 9% of

the next generation is be a result of this operator.

Each genome in the newly created population is then re-evaluated, meaning, its score

is computed. The process repeats itself until it fails to improve any further and the

genome with the best ranking is selected as output from the most recent generation.

Obviously if we examine the best solution from generation i + 1 compared to that

of generation i we will notice that the ‘quality’ of the best solution is non decreasing

over the generations as we have the ‘Elitism mechanism’ which ensures us that the

best individuals will survive to the next generation.

6 Experimental Results

The datasets for our experiments were created using our own data generator which

supports any parameters combination of number of machines and jobs, number of

added or removed machines, number of added or removed jobs, as well as the dis-

tributions of job lengths, job-extension penalty, and transition costs.

Instances on which we run our heuristics could be very large (hundreds of jobs, and

several dozens of machines). Instances on which we run our brute-force solver (intro-

duced in Sect. 4.1) had to be smaller. In particular, we ran the brute-force solver on

instances with 20 jobs and 4 machines. We find out that even such small instances can

provide a good comparison between different heuristics; therefore, the brute-force

solver is helpful for concluding how far from the optimum our heuristics perform.

The optimal algorithm for min ΣjCj, based on a reduction to perfect matching (intro-

duced in Sect. 4.2), was able to handle relatively large instances of 15 machines and

300 jobs. In our basic template for job creation, the jobs’ lengths were uniformly

distributed in [1, 20]. The job-extension penalty of job j was uniformly distributed

in [1,
pj

2
], and the transition costs were uniformly distributed in [1, 5].
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To generate problems instances for a specific experiment we took a template

instance, decided on one parameter that will vary in the different runs, and set the

rest of the parameters to basic values. For example, to understand how the num-

ber of added machines affects the heuristics performance, we fixed all the other

parameters (jobs’ lengths, transition costs, etc.), and run the heuristics on multiple

instances which vary only in the number of added machines. To avoid anomalies,

we have generated for each experiment 5 instances with the same parameters, based

on 5 templates instances (same configuration, different instance) and considered the

average performance as the result.

Another parameter that could affect the performance of our heuristics is the initial

assignment - which may be random, SPT or LPT. We found out that in practice the

initial assignment does not affect the results significantly and the results we present

in the sequel were all generated with a randomize initial assignment - which is a bit

more ‘challenging’ and therefore emphasizes the differences among the heuristics.

The results of our experiments are presented and analyzed below. In all the figures,

the bars show the objective value (ΣjCj or Cmax), and the lines show the corresponding

transition cost.

6.1 Results for the Minimal Total Flow-Time Problem

6.1.1 Machines’ Addition

The template for heuristics that analyze the min ΣjCj problem consists of 15

machines and 300 jobs. We start by showing how the different heuristics performs on

instances with both transition costs and job-extension penalties, where the number

of added machines was set to m/2. As shown in Fig. 2, with unlimited budget the

genetic algorithm is the closest to the known optimum, calculated by the perfect

matching algorithm result. As budget is limited, the performance of the genetic algo-

rithm drops. As expected, the lower the budget, the higher the objective value. Also,

the differences between the heuristics are less significant as the budget decreases,

as less transitions are allowed. Interesting fact is that the genetic algorithm has a

slight improvement as the limitation is getting stricter. We explain this by the fact

that before starting the algorithm we include in the population items that obey the

allowed budget. Later, these items are influencing the genetic process and are helping

the algorithm to converge to a good solution, better than with a more relaxed budget

limitation.

The goal of our next experiment was to see how close the heuristics get to the

actual optimum. For this test we have used our brute-force solver on relatively small

problem instances (4 machines and 20 jobs), two machines were added and the

budget was set to 20. The results for various extension penalties are shown in Fig. 3.

We observe that both ‘Greedy-reversion’ and ‘Cyclic-reversion’ heuristics were very

close to the optimum.
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Fig. 2 Results for min ΣjCj with m/2 added machines and variable budget

6.1.2 Machines’ Removal

Figure 4 presents the performance of the different heuristics when the modification

is machines’ removal and the budget is limited to 150. According to our parameters,

this budget is expected to be sufficient for the migration of about 20% of the jobs.

The initial assignment was of 300 jobs on 15 machines. Not surprisingly, we see

an increase of the objective value as the number of removed machines increases.

All of the heuristics performed more or less the same, both in terms of the achieved

objective value and in term of the budget utilization, with an exception of the Genetic

algorithm which manage to use a significantly lower budget.

Figure 5 presents the results for the same instance and the same modification

only with unlimited budget. This problem is the one for which we have an efficient

optimal algorithm (see Sect. 4.2). The genetic algorithm perform very close to the

optimum for every number of removed machines. In fact, for two removed machines

its transition cost is lower than the optimum and only slightly higher in the total
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Fig. 3 Results for min ΣjCj with variable extension penalty

flow-time (recall that the optimal algorithm ‘insists’ on finding a reschedule that

minimizes the total flow-time). On the other hand the SPT-Like heuristic is both

very costly and gives poor results. This can be explained by the fact that insisting

on a complete SPT order requires many transition, and involves many job-extension

penalties.

6.2 Results for the Minimum Makespan Problem

6.2.1 Machines’ Addition

Our template for experiments analyzing the min Cmax problem consists of 30

machines and 500 jobs. Figure 6 presents results for adding 15 machines and vari-

able budget. The ‘Loads-based’ heuristic is the best heuristic. The genetic algorithm
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Fig. 4 Results for ΣjCj for machines’ removal and limited budget

perform poorly compared to the other heuristics, but on the other hand, it does not

utilize the whole budget.

In the our next experiment we measure how close the heuristics get to the optimum.

We have used our brute-force solver on relatively small problem instances, consisting

of 4 machines, 20 jobs, and a limiting budget of 20. The results for various extension

penalties are shown in Fig. 7. Once again, the ‘Loads-based’ heuristic outperform

the others, and is relatively close to the optimum. The ‘LPT-based’ heuristic seems

to perform (relatively) better as the job-extension penalty increases.

6.2.2 Removing Machines

Our next experiments compare the performance of the different heuristics when the

modification is machines’ removal. We performed two experiments - with budget

limited to 250 and with unlimited budget. The results are shown in Figs. 8 and 9
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Fig. 5 Results for ΣjCj for machines’ removal and unlimited budget

respectively. Our results show that with unlimited budget, all three heuristics (LPT-

based, Loads-based and genetic) perform more or less the same. While a similar

makespan is achieved, the Loads-based heuristic requires the lower transition cost,

then the LPT-based (that needs 10% higher cost) and the genetic (15 − 20% higher

than Loads-based). With limited budget, the Loads-based and LPT-based heuristics

perform significantly better than the genetic algorithm, but they also require a much

higher budget.

7 Conclusions and Future Work

We presented theoretical and experimental results for the reoptimization variant of job

scheduling problems. We have shown that the problems of finding the minimum total

flow-time with limited budget, finding the minimum makespan with limited budget
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Fig. 6 Results for min Cmax with m/2 added machines and variable budget

and finding the minimum makespan with unlimited budget are NP-Complete. We

have designed and implemented several heuristics for each of these problems, and

performed a comprehensive empirical study to analyze their performance. To see how

well these heuristics perform compared to the actual optimum, an efficient branch-

and-bound brute-force solver was designed and implemented. An optimal algorithm

for the minimum total-flow problem with unlimited budget was also implemented.

In general, our experiments reveal that while the problems are NP-hard, heuristics

whose time complexity is polynomial in the number of jobs and machines, perform

very well in practice. Simple algorithms, that are based on adjustment of known

heuristics for the one-shot problem (with no modifications) are both simple to imple-

ment and provide results that are, on average, within 10 − 15% from the optimum.

More complex algorithms, that are based on a preprocessing in which a perfect

matching algorithm is implemented, perform on average even better.
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Fig. 7 Results for min Cmax with variable extension penalty

We have observed that while the Genetic algorithm does not perform well when

given a limited budget, it performs relatively well with unlimited budget for the

minimum Cmax problem, and close to optimum for ΣjCj. It also takes a considerable

amount of time to run. In some scenarios, its objective value may not be competitive

compared to other heuristics, however, its budget utilization is impressively good

(see for example Fig. 4). A known issue of genetic algorithm is that the parameters

must be carefully tuned in order for the algorithm to converge into a good solution.

Future work on this algorithm might refactor the population size or operators we have

used (Elitism, Crossover, Mutation) by adding new operators, modify the existing

or change the possibilities of each to create a more optimized genetic algorithm.

Another direction to explore is to create a dedicated score method for each variant

of the problems. For real life applications where budget utilization is a big concern,

we are sometimes allowed to use lot of budget but strive to use as less as possible.

The genetic algorithm is a good choice for such scenarios.
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Fig. 8 Performance for min Cmax for machines’ removal and limited budget

Our greedy heuristics performed well, both on the ΣjCj and the Cmax problems. We

have observed that the ‘Loads-based’ heuristic outperformed the ‘LPT-based’ both

in terms of objective value and budget utilization. With unlimited budget, the bud-

get utilization difference was more significant. For min ΣjCj, the ‘Cyclic-reversion’

showed better performance compared to the ‘Greedy-reversion’, This result does not

surprise us as a more balanced solution is expected to yield better results for the

minimum total flow-time problem. In terms of budget utilization, it was expected

that this greedy, budget oriented method will utilize as much budget as possible.

An additional direction for future work is to develop algorithms for the minimum

makespan problem with a guaranteed approximation ratio. While tuning existing

approximation-algorithm for the classical one-shot problem seems to be a promising

direction, the presence of transition-costs and job-extension penalties give rise to new

challenges and considerations. Finally, it would be interesting to consider different

objective functions, or different scheduling environments, for example, jobs with

deadlines or precedence constraints, as well as unrelated or restricted machines.
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Fig. 9 Performance for min Cmax for machines’ removal and unlimited budget
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