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Abstract

We consider the following dynamic load balancing game: Given an initial assignment of
jobs to identical parallel machines, the system is modified; specifically, some machines are
added or removed. Each job’s cost is the load on the machine it is assigned to; thus, when
machines are added, jobs have an incentive to migrate to the new unloaded machines. When
machines are removed, the jobs assigned to them must be reassigned. Consequently, other jobs
might also benefit from migrations. In our job-extension penalty model, for a given extension
parameter δ ≥ 0, if the machine on which a job is assigned to in the modified schedule is
different from its initial machine, then the job’s processing time is extended by δ.

We provide answers to the basic questions arising in this model. Namely, the existence
and calculation of a Nash Equilibrium and a Strong Nash Equilibrium, and their inefficiency
compared to an optimal schedule. Our results show that the existence of job-migration penal-
ties might lead to poor stable schedules; however, if the modification is a result of a sequence
of improvement steps or, better, if the sequence of improvement steps can be supervised in
some way (by forcing the jobs to play in a specific order) then any stable modified schedule
approximates well an optimal one.

Our work adds two realistic considerations to the study of job scheduling games: the
analysis of the common situation in which systems are upgraded or suffer from failures, and
the practical fact according to which job migrations are associated with a cost.

Keywords: algorithms, load balancing games, dynamic systems, Nash equilibrium.

1 Introduction

The well-studied load balancing problem considers a scenario in which a set of jobs needs to
be assigned on a set of identical parallel machines. Each job j, is associated with a processing
time pj and the goal is to balance the load on the machines. In contrast to the traditional load
balancing problem, where a central designer determines the allocation of jobs to machines and all
the participating entities are assumed to obey the protocol, in the load balancing game, each job
is owned by a selfish agent who wishes to optimize its own objective.
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Given an assignment, each job incurs a cost which is equal to the total load on the machine
it is assigned to. This cost function characterizes systems in which jobs are processed in parallel,
or when all jobs on a particular machine have the same single pick-up time, or need to share
some resource simultaneously. This problem has been widely studied in recent years from a game
theoretic perspective, see [14, 2, 5, 8], and a survey in [17].

In this work, we consider a dynamic variant of this game. Specifically, we are given an
assignment, s0, of n jobs on m0 machines. The system is modified, namely, m′ machines are
added or removed. When machines are added, jobs will naturally have an incentive to migrate
to the new unloaded machines. When machines are removed, the jobs assigned to the removed
machine must be reassigned. As a result of these migrations, other jobs might also benefit from
migrations. The goal is to find a pure Nash Equilibrium (NE) assignment, s, in the modified
system. In such an assignment, no job can reduce its cost by migrating to a different machine.
Apparently, this can be viewed as a new instance of the load balancing game. However, in the
model we consider, a deviation from the initial assignment is associated with a penalty. We
introduce and study the job-extension penalty model. In this model, we are given an extension
parameter δ ≥ 0. If the machine on which job j is scheduled in s is different from its initial
machine in s0, then the processing time of j is extended to be pj + δ. Practically, this penalty is
justified since the reassignment of j causes some extra work on the system, for example, if some
preprocessing or configuration set-up was already performed according to the initial assignment.

We distinguish between the following scenarios:

1. The initial schedule s0 might be a pure NE, or not.

2. The system’s modification might be addition or removal of machines.

3. The modified schedule is achieved by performing a sequence of improvement steps, a se-
quence of best-improvement steps, or arbitrarily.

4. Improvement steps are done unilaterally or by coalitions.

Applications: Traditional analysis of job scheduling assume a central utility that determines
the allocation of jobs to machines and all the participating entities are assumed to obey the
protocol. However, in practice, many systems are used by heterogeneous, autonomous agents,
which often display selfish behavior and attempt to optimize their own objective rather than the
global objective. Game theoretic analysis provides us with the mathematical tools to study such
situations, and indeed has been extensively used recently to analyze multiagent systems. This
trend is motivated in part by the emergence of the Internet, which is composed of distributed
computer networks managed by multiple administrative authorities and shared by users with
competing interests [15].

Our work adds two realistic considerations to the study of job scheduling using game theoretic
analysis. First, we assume that the system is dynamic and resources might be added or removed -
this reflects the common situation in which systems are upgraded or suffer from failures. Second,
we assume that job migrations are associated with a cost. Indeed, in real systems, migrations do
incur some cost.

The added cost might be due to the transferring overhead or due to set-up time that should be
added to the job’s processing time in its new location. Consider for example an initial allocation
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of clients to download servers. Assume that some preprocessing is done at the time a client is
assigned to a server, before the download actually begins (e.g., locating the required file, format
conversion, etc.). Clients might choose to switch to a mirror server. Such a change would require
repeating the preprocessing work on the new server.

Another example of a system in which extension penalty occurs is of an RPC (Remote Proce-
dure Call) service. In this service, a cloud of servers enables service to simultaneous users. When
the system is upgraded, more virtual servers are added. Users might switch to the new servers and
get a better service (with less congestion), however, some set-up time and configuration tuning is
required for each new user.

Note that in all the above applications, the delay caused due to a migration is independent of
the migrating job. A similar, low-tech, application is freight transport, in which the whole cargo
ship is delayed when items are added. The registration and handling of a new item takes fixed
time, independent of the item’s size and weight.

1.1 Model and Preliminaries

A job rescheduling setting is defined by the tuple G = ⟨M0,M
′, N, pj , δ⟩, where M0 is a set of

initial identical machines and M ′ is a set of added or removed machines. If the modification is
machines’ addition, then M ′ is a set of new machines, all identical to the machines in M0. If the
modification is machines’ removal then M ′ ⊆ M0. We denote by m0,m

′ the number of machines
in M0,M

′, respectively. N = {1, . . . , n} is the set of jobs. For each job j ∈ N , pj denotes
the processing time of job j. δ > 0 is the extension parameter, i.e, the time penalty that is
added to the processing time of a migrating job. An assignment method produces an assignment
s = (s(1), . . . , s(n)) of jobs to machines, where s(j) is the machine to which job j is assigned.
The assignment is referred to as a schedule. We use s0, s to denote the initial and the modified
schedules, respectively. In s, the processing time of a job j ∈ N on machine i ∈ M0

∪
M ′ is pj if

i = s0(j) and pj+δ otherwise. The load on a machine i in a schedule s is the sum of the processing
times (including the extension penalty) of the jobs assigned to i, that is, Li(s) =

∑
j:s(j)=i pj +δi,j

where δi,j = 0 if s0(j) = i and δ otherwise. For a job j ∈ N , let cj(s) be the cost of job j in the
schedule s, then cj(s) = Ls(j).

An assignment s is a pure Nash equilibrium (NE) if no job j ∈ N can benefit from unilaterally
deviating from its machine to another machine; i.e., for every j ∈ N and every machined i ̸= s(j),
Li + pj + δi,j ≥ Ls(j).

Some of our results refer to outcomes of a sequence of improvement steps. Better-Response
Dynamic (RD) is a local-search method where in each step some player is chosen and is allowed
to change his assignment, given the assignment of the others. In better-RD, any improvement
step can be performed. In best-RD, players select their best possible response. When best-
RD or better-RD are performed, one job might migrate several times. The extension penalty is
independent of the number of steps and only the final assignment matters. In particular, if j
leaves its machine in s0 and returns to it later, then j is not extended. This is justified by the
applications motivating our work - in which the penalty is not due to physical migration cost but
due to the adjustment of the job’s processing to a new machine.

It is well known that decentralized decision-making may lead to sub-optimal solutions from
the point of view of society as a whole. We quantify the inefficiency incurred due to self-interested
behavior according to the price of anarchy (PoA) [14, 15] and price of stability (PoS) [1] measures.
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The PoA is the worst-case inefficiency of a Nash equilibrium, while the PoS measures the best-
case inefficiency of a Nash equilibrium. The social objective function we consider is the egalitarian
one, i.e., we wish to minimize the cost of the job with the highest cost. In scheduling terms, this
is equivalent to minimizing the maximal load on some machine (also known as makespan). For a
schedule s, makespan(s) = maxjcj(s) = maxiLi(s) = Lmax(s). Formally,

Definition 1.1 Let G be a family of games, and let G ∈ G be some game in this family. Let Φ(G)
be the set of Nash equilibria of the game G. If Φ(G) ̸= ∅:

• The price of anarchy of the game G is the ratio between the maximal cost of a Nash equilib-
rium and the social optimum of G. That is PoA(G) = maxs∈Φ(G) Lmax(s)/OPT (G). The
price of anarchy of the family of games G is PoA(G) = SupG∈GPoA(G).

• The price of stability of the game G is the ratio between the minimal cost of a Nash equi-
librium and the social optimum of G. That is, PoS(G) = mins∈Φ(G) Lmax(s)/OPT (G), and
the price of stability of the family of games G is PoS(G) = SupG∈GPoS(G).

In section 4 we study coordinated deviations. A set of players Γ ⊆ N forms a coalition if
there exists a move where each job j ∈ Γ strictly reduces its cost. An assignment s is a strong
equilibrium (SE) if there is no coalition Γ ⊆ N that has a beneficial move from s. The strong
price of anarchy and the strong price of stability are defined similarly, where Φ(G) refers to the
set of strong Nash equilibria.

1.2 Related Work

The minimum makespan problem corresponds to the centralized version of our game in which all
jobs obey the decisions of one utility. This is a well-studied NP-hard problem. The simple greedy
List-scheduling (LS) algorithm [11] provides a (2− 1

m)-approximation to the minimum makespan
problem. A bit better approximation ratio of (43 − 1

3m) is guaranteed by the Longest Processing
Time (LPT) algorithm [12]. A PTAS for the minimum makespan problem on identical machines
is given in [13].

In the associated load balancing game, each job is controlled by a selfish agent who aims to
minimize its cost - given by the load on the machine it is assigned to. Fotakis et al. showed that
LPT-schedules are NE schedules [10]. In [6], Even-dar et al. analyzed the convergence time of
BRD on unrelated machines. Note that our model can be seen as a restricted case of scheduling
on unrelated machines. For every job j and machine Mi, the processing time of j on Mi is pj
if i = s0(j) and pj + δ otherwise. Our analysis provides tighter results than those known for
unrelated machines [5].

The concept of the price of anarchy (PoA) was introduced by Koutsoupias and Papadimitriou
in [14]. They proved that the price of anarchy of job scheduling games is 2 − 1

m . In [9], Finn
and Horowitz presented an upper bound of 2 − 2

m+1 for the price of anarchy in load balancing
games with identical machines. Note that in this game, the PoA is equivalent to the makespan
approximation.

Other related work deal with cost functions that depend on the internal order of jobs, e.g.,
in [4, 3], or cost function that is based on both the congestion on the machine and its activation
cost [7]. Coordinated deviations were studied by Andelman et al. in [2]. A survey of results on
selfish load balancing appears in [17].
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Some of our results bound the inefficiency of a NE produced by a sequence of improvement
steps (best or better-RD). Analysis of such sequential NE was initiated in [16] for several other
games.

1.3 Our Results

We study the problem of equilibrium existence, calculation, and inefficiency in the load rebalancing
game with uniform extension penalty. We show that any job scheduling game with added or
removed machines possesses at least one Nash equilibrium schedule. Moreover, some optimal
solution is also a Nash equilibrium, and thus, the price of stability is 1. We show that in general,
the price of anarchy is unbounded when machines are either added or removed. The PoA can be
bounded if the modified schedule is achieved by performing improvement steps. Specifically, for
a NE that is achieved by performing improvement steps, we show that the PoA is

1. m′−1
m0

+ 2 when machines are added and s0 is a NE.

2. m0 +m′ when machines are added and s0 is not a NE.

3. m0 −m′ when machines are removed (and s0 is either a NE or not a NE).

4. 2− 1
m0−m′ when machines are removed, s0 is a NE, and jobs are activated in a specific order,

denoted two-phase better-RD.

For all the above cases we prove the upper bound and provide matching lower bounds. The lower
bounds are tight for some values of m0,m

′ and almost tight for other values.
We also analyze the load rebalancing game assuming coordinated deviations are allowed. We

prove that a strong equilibrium exists for all system modifications and that the SPoS is 1. We
show that the SPoA is 3 for both the adding and removing machines scenarios and that this
bound is tight. Moreover, we provide a closer analysis of the strong price of anarchy, and bound
this value as a function of the ratio between δ and OPT . Specifically, we show that the strong
price of anarchy is 2 + δ

OPT and that this bound is tight. Moreover, it is achieved even when the
SE is reached by a sequence of coalitional improvement steps. Finally, we show that for any value
of δ > 0, it is NP-hard to determine whether a given modified schedule is a SE.

This paper is organized as follows: In Section 2 we examine the scenario where m′ identical
machines are added. In Section 3 we examine the scenario in which m′ machines are removed. In
Section 4 we consider coordinated deviation of jobs. For each scenario we consider the problem
of equilibrium existence, calculation, and inefficiency, distinguishing between various initial states
and convergence methods. Finally, in Section 5 we conclude and suggest several directions for
future work.

We note that in a dynamic setting in which machines are added or removed and migrations
are free of cost (i.e., when δ = 0), then the results known for classic load balancing games apply.
In particular, the PoA assuming δ = 0 is 2 − 2

m+1 for a game with m machines in the modified
systems. The proofs are identical to the proofs for a fixed number of machines. Thus, the
difference between our results and the results for the classic load balancing game are due to the
migration penalty.
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2 Machines’ Addition

In this section we study the scenario in which the system’s modification involves an addition of
machines and uniform extension penalty is applied. Specifically, for a given parameter δ > 0, if a
job is assigned to a machine different than its original machine then its processing time is extended
to be pj + δ. Recall that m0,m

′ denote the initial and added number of machines, respectively.

2.1 Equilibrium Existence and Computation

Every instance of the load rebalancing game with added machines and uniform extension penalty
admits at least one pure Nash equilibrium. This follows from the fact that the sorted machines’
load-vector corresponding to the schedule is decreasing lexicographically with any beneficial move.
Thus, any better-RD process converges to a NE.

The next question we consider is how many moves are required to reach a NE. The following
result shows that, for any given initial assignment, there exists a short sequence of beneficial
moves that leads to a NE. Assume that the jobs are sorted according to their processing length,
that is, p1 ≥ p2 ≥ . . . ≥ pn. Max-length best-RD activates the jobs one after the other according
to the sorted order. An activated job j plays a best response, i.e., it moves to a machine that
minimizes its cost (or remain on s0(j) if no beneficial move exists).

We show that after a single phase of max-length best-RD, the system reaches a NE. While this
result is valid also for the classic load balancing game [17], its proof for the load rebalancing game
is more involved, since migrating jobs have stronger incentive to return to their initial machine
(and get rid of the penalty).

Theorem 2.1 Let s0 be any initial schedule of n jobs on m0 machines. Assume that m′ machines
are added. Starting from s0, max-length best-RD reaches a pure Nash equilibrium after each job
is activated once.

Proof: We begin with the following observation.

Claim 2.2 As long as each job moves at most once, the minimal load does not decrease.

Proof: We show that the minimum load does not decrease as a result of any first move of
a job j. Assume that j moves from Ma to Mb. Since this is the first move of job j, it holds
that Ma = s0(j). Denote by L0

i , L
1
i the loads on machine Mi before and after the move of

job j respectively. Denote by L0
min the minimal load before the move of job j. The move is

beneficial for j, thus, L0
b + pj + δ < L0

a. We show that min{L0
a, L

0
b} ≤ min{L1

a, L
1
b}. Clearly,

the load on any machine other than a,b does not change. Since Mb is the best response of j,
L0
b = L0

min = min{L0
a, L

0
b}. In addition, L1

a = L0
a−pj , L

1
b = L0

b+pj+δ < L0
a and L0

a−pj > L0
b+δ.

Thus, min{L0
a − pj , L

0
b + pj + δ} ≥ min{L0

b + δ, L0
b + pj + δ} ≥ min{L0

a, L
0
b}.

A job j is said to be satisfied if it cannot reduce its cost by migrating to a different machine.
By the definition of the cost function with migration penalty, j is satisfied if it is assigned to
s0(j) and Ls0(j) ≤ Li′ + pj + δ for every i′ ̸= s0(j), or if it is assigned to Mi, for some i ̸= s0(j),
Li ≤ Li′ + pj + δ for every i′ ̸= s0(j), and Li ≤ Ls0(j) + pj . We show that once a job j was
activated and played its best response, it never gets unsatisfied again.
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Assume by contradiction that the claim is false and let j be the first job for which a second
beneficial move exists. Let Ma = s0(j). Assume that on its first move j migrated from Ma to
Mb. Job j might leave Mb only if one of the following conditions holds:

C1 : For some machine Mc ̸= Ma it holds that Lc ≤ Lb − pj − δ.

C2 : La ≤ Lb − pj .

We show that none of these conditions hold. We first prove it assuming that the load on Mb does
not increase, and then consider also the possibility that the load on Mb increases after j joins it.
Denote by t the time in which job j moves from Ma to Mb, and let Lt

min, L
t
i denote the minimal

load and the load on machine i, respectively, at time t.

Claim 2.3 Conditions C1 and C2 do not hold as long as the load on Mb does not increase.

Proof: Since j performs a best move, it must be that Lt
min = Lt

b. According to Claim 2.2, the
minimal load does not decrease during the game, therefore, the load on each machine is at least
Lt
min. This implies that condition C1 does not hold and the only machine to which j might move

to is Ma. Job j might move back to Ma if La < Lt
min + δ. We show that this never happens. In

order for the load on machine Ma to decrease, there must be a job j′ that leaves it after the move
of j. Since we assume that j is the first job that is migrating twice, it must be that s0(j

′) = Ma.
Let Md be the machine to which j′ moves, and let t′ be the migration time. Before the move of
j′, Lt′

a > Lt′
d + pj′ + δ. Since Lt′

d ≥ Lt
min, L

t′
a > Lt

min+ pj′ + δ. After the move of j′ (at time t′+1),
Lt′+1
a = Lt′

a − pj′ > Lt
min + δ = Lt

b + δ. Since we assume that no job is added to Mb, it holds that

Lt′+1
b = Lt

b. Thus, L
t′+1
a > Lt′+1

b + δ and condition C2 does not hold.

Claim 2.4 Conditions C1 and C2 do not hold after any job k joins Mb.

Proof: Denote by t′ the time after the move of job k to Mb. Mb ̸= s0(k) since we assume that
j is the first job that is migrating twice. We know that pj ≥ pk because job j was activated before
job k and jobs are activated in non-increasing order of their length. Therefore, for any machine
Mi,

Lt′
b ≤ Lt′

i + pk + δ ≤ Lt′
i + pj + δ.

This is true also in case i = s0(k), (L
t′
b ≤ Lt′

i + pk ≤ Lt′
i + pj + δ). Thus, Lt′

b − pj − δ ≤ Lt′
i and

condition C1 does not hold. ForMa we show that condition C2 does not hold, that is L
t′
a ≥ Lt′

b −pj .
Recall that t′-1, t′ are the times before and after the move of job k to Mb, respectively.

If k moves from Ma to Mb, then

Lt′−1
a > Lt′−1

b + pk + δ (1)

After the move Lt′
a = Lt′−1

a − pk and Lt′
b = Lt′−1

b + pk + δ. Job j would benefit from migrating

to Ma if Lt′
a ≤ Lt′

b − pj which is equivalent to Lt′−1
a − pk + pj < Lt′−1

b + pk + δ. Since job j was

activated before job k, we have pk ≤ pj . Thus, L
t′−1
a < Lt′−1

a −pk+pj , and Lt′−1
a < Lt′−1

b +pk+δ,
contradicting (1).

Next we consider the case in which job k moves to Mb from Mc ̸= Ma. Job k prefers Mb over
Ma, therefore, L

t′
a + pk + δ ≥ Lt′

b . This implies that Lt′
a ≥ Lt′

b − pk − δ. Therefore, condition C2

does not hold and job j will not benefit from migrating back to Ma.
We conclude that max-length best-RD reaches a pure Nash equilibrium after each agent is

activated at most once.
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2.2 Equilibrium Inefficiency

In this section we bound the price of stability and the price of anarchy of our game, distinguishing
between various initial states and convergence methods. For the classic load balancing game, with
no extension penalty, it is known that PoS = 1 and PoA = 2− 2

m+1 . We show that in our model
PoS = 1 and the PoA is not bounded by a constant. It can be arbitrary large if the schedule
is not achieved by a sequence of improvement steps and bounded by m′−1

m0
+ 2 if the schedule is

achieved by a sequence of improvement steps. We also show that if the initial schedule is not
a NE but the schedule is achieved by performing a sequence of improvement steps, the PoA is
bounded by m0 +m′.

It is easy to see that a beneficial move does not increase the makespan. Therefore, by per-
forming best-RD starting from any optimal assignment, we reach a NE whose makespan is equal
to the optimum. This implies that the PoS equals 1. We turn to analyze the PoA. We first
show that for an arbitrary NE, the PoA is unbounded. The bound is valid even if m′ = 0 and
the initial schedule is a NE.

Theorem 2.5 When the NE is not necessarily achieved by a sequence of beneficial moves, the
PoA is unbounded.

Proof: Given m′,m0, δ and r, we construct an instance for which the PoA is r. Let ε be a
small constant such that r = ε+δ

ε . Assume that in the initial schedule, s0, there is a single job of
length ε on each machine in M0 (see Figure 1(a)). Independent of the number of added machines,

ε ε ε ε

ε+δ ε+δ ε+δ ε+δ

(a) (b)

Figure 1: An instance achieving unbounded PoA. (a) the initial assignment, (b) the worst NE.

m′, a schedule in which each job is assigned to a machine in M0 different from s0(j) and each
machine in M0 is assigned a single job, is a NE (see Figure 1(b)). In this schedule, all jobs have
the same cost of ε + δ. It is easy to verify that this schedule is a NE. The optimal schedule is
identical to s0, where all jobs have the same cost of ε. The PoA is ε+δ

ε = r.
The more realistic scenario is when the NE is reached by performing beneficial moves, starting

from a NE schedule s0. We provide an upper bound that is tight when m′ mod m0 = 1, and
almost tight for any other case.

Theorem 2.6 The PoA when the NE is reached by better-RD is at most m′−1
m0

+ 2.

Proof: Denote by L0
max, Lmax, OPT the makespan of the initial schedule s0, the makespan of

the final NE s, and the minimal possible makespan, respectively. Let P =
∑

j pj denote the total
initial length of the jobs. Let j be the shortest job on the most loaded machine in s0. Since s0
is a NE, it holds that the gap between the maximal and minimal load is at most pj . Therefore,
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m0L
0
max ≤ P+(m0−1)pj . Implying, L0

max ≤ P
m0

+m0−1
m0

pj . Also, since s is achieved by performing

beneficial moves, it must be that Lmax ≤ L0
max. Clearly, even with no migration penalties, for the

minimal possible penalty it holds that OPT ≥ P
m0+m′ . Also, OPT ≥ pj . We get that the price of

anarchy is bounded by

Lmax

OPT
≤

P
m0

+ m0−1
m0

pj

OPT
≤

P
m0

P
m0+m′

+
m0−1
m0

pj

pj
≤ m0 +m′

m0
+

m0 − 1

m0
= 2 +

m′ − 1

m0
.

Let m′ = km0 + α for integers k and α < m0. By Theorem 2.6, we have that the PoA is at
most m′−1

m0
+ 2 = m0k+α−1

m0
+ 2 = k + α−1

m0
+ 2. We show that for α = 1 and any k, the bound is

tight. Almost tight analysis for other values of k, α is given in Appendix A.

Theorem 2.7 For any number of machines m0, for any integer k > 0, and for any ρ > 0, there
exists an input with m′ = km0 + 1 added machines, for which PoA > 2 + m′−1

m0
− ρ, and the NE

is reached by better-RD.

Proof: Given ρ,m0, k, let m
′ = km0 +1. Let B be an integer such that ρ ≥ k+2

B+1 . In addition,

let ε = 1
(k+1)m′B and δ = 1− ε.

The set of jobs includes m′ + m0 = (k + 1)m0 + 1 jobs of length B, and 1/ε = (k + 1)m′B
jobs of length ε. In the initial assignment, a single machine is assigned k + 2 jobs of length B
and each of the other m0 − 1 machines is assigned k + 1 jobs of length B, as well as some jobs of
length ε, such that the ε-jobs are assigned in a balanced way and the assignment is a NE. Note
that the load on the first machine is (k+2)B and the load on each of the other m0 − 1 machines
is between (k + 1)B and (k + 1)B + 1.

We present the construction of the lower bound in Fig. 2, where m0 = 3 and k = 1 (implying
m′ = 4). The initial assignment is given in Fig. 2(a).

B

B

B B

B

B

B

(a)

B

B

B B

B

B

B
ε+δ
.

.

.

.

.

.

.

.

.

.

.

.

(b)

B B B B+δ B+δ B+δ B+δ

(c)

ε’s ε’s

Figure 2: An instance achieving the maximal possible PoA. (a) the initial assignment, (b) the worst NE,
and (c) the best NE.

Assume that m′ machines are added and improving steps are performed. A possible NE (see
Figure 2(b)) is a one in which the long jobs remain on M0 and every new machine is assigned
(k + 1)B jobs of length ε. The load on the first machine remains (k + 2)B. The load on each of
the other m0−1 machines of M0 is (k+1)B. The load on every new machine is (k+1)B(δ+ε) =
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(k + 1)B. The maximum load is (k + 2)B - achieved on the first machine. This assignment is
a NE as the shortest job on the most loaded machine has length B - which is exactly the gap
from the load on all other machines. Also, the other machines are perfectly balanced, therefore
no migrations are beneficial.

On the other hand, the following is an optimal assignment (see Figure 2(c)): One job of length
B migrates to each of the new machines. The other m0 jobs of length B as well as all jobs of
length ε remain on the original machines M0. The maximal load on M0 is at most B + 1. The
load on every new machine is B + δ < B + 1.

The ratio between the maximal loads of the two assignments is (k+2)B
B+1 . The value of B was

selected such that this is more than 2 + k − ρ = 2 + m′−1
m0

− ρ.
Finally, we analyze the PoA for arbitrary initial assignment. The analysis is tight for any

number of machines m0, m
′ and for any δ > 0.

Theorem 2.8 If the initial assignment is not necessary a NE, and the modified schedule is reached
by better-RD, then the PoA is at most m0 +m′.

Proof: Clearly, in the initial assignment, L0
max ≤

∑
j pj . Since improvement steps are

performed, we have Lmax ≤ L0
max. Also, the makespan of the modified schedule is at least

OPT ≥
∑

j
pj

m0+m′ . Therefore, PoA ≤ Lmax
OPT ≤ L0

max
OPT ≤

∑
j
pj∑

j
pj/(m0+m′)

≤ m0 +m′.

We show that this bound is tight for any number of machines m0, m
′ and for any ρ > 0:

Theorem 2.9 For any number of machines m0, m
′ and for any ρ > 0, there exists a non-NE

schedule on m0 machines, such that when m′ machines are added and improvement steps are
performed, the PoA is at least m0 +m′ − ρ.

Proof: Given ρ,m0,m
′. Let B be an integer such that ρ ≥ m0+m′−1

B+1 . In addition, let

ε = 1
(m0+m′)(m0+m′−1)B and δ = 1− ε.

In the initial assignment, a single machine is assigned m0 + m′ jobs of length B and 1
ε jobs

of length ε. The other machines in M0 are empty. Thus, the load on the first machine is
(m0 +m′)B + 1 and the load on each of the other m0 − 1 machines is 0.

We present the construction of the lower bound in Figure 3. The initial assignment is given
in Figure 3(a). In this instance m0 = 3 and m′ = 2.

Assume that m′ machines are added and improvement steps are performed. A possible NE
(see Figure 3(b)) is a one in which the long jobs remain on the first machine and every other
machine is assigned (m0 +m′)B jobs of length ε. The load on the first machine is (m0 +m′)B.
The load on each of the other m0 +m′ − 1 machines is also (m0 +m′)B(ε + δ) = (m0 +m′)B.
Since the load on all the machines is balanced, the schedule is a NE.

On the other hand, the following is an optimal assignment (see Figure 3(c)): One job of length
B is migrating to each of the empty m0 +m′ − 1 machines. One job of length B and all jobs of
length ε remain on the original first machine. The load on the first machine M0 is B + 1. The
load on every other machine is B + δ < B + 1.

The ratio between the maximal loads of the two assignments is (m0+m′)B+1
B+1 . The value of B

was selected such that this is at least m0 +m′ − ρ.
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Figure 3: An instance achieving the maximal possible PoA. (a) the initial assignment (Not a NE), (b) the
worst NE, and (c) the best NE.

3 Machines’ Removal

In this section we study the scenario in which the systems’ modification involves the removal of
machines. Every job assigned to a removed machine must be reassigned. As a result, additional
jobs might also be interested in migrating. Recall that M0,M

′ denote the sets of initial and
removed machines, respectively. Let M1 = M0 \ M ′ denote the set of remaining machines. Let
m0,m

′,m1 denote the corresponding numbers of machines, that ism1 = m0−m′. Throughout this
section we assume that the initial schedule, s0, is a NE. The last result in this section, Theorem
3.8, considers the case in which s0 is not a NE.

3.1 Equilibrium Existence and Computation

We prove the existence of a NE and analyze the convergence rate of several policies. When better-
RD is applied, all jobs are activated in an arbitrary order. When activated, each job migrates if it
is on M ′ or if it can improve its cost. For every job j, if s0(j) ∈ M ′, j must be activated at least
once, move to a machine in M1, and be extended. Clearly, jobs must not migrate into machines
in M ′.

Theorem 3.1 Better-RD leads to a NE assignment for every instance of the load rebalancing
game with removed machines and uniform extension penalty.

Proof: Let s1 be the schedule at the time after the last job migrated from M ′. Thus, in s1
all the jobs are scheduled on M1. Let (L1, . . . , Lm1) be the sorted load vector corresponding to
s1. That is, Li is the load on the machine that has the i-th highest load. If s1 is not a NE, then
there exists a beneficial move to some job. We show that the sorted load vector obtained after
performing a beneficial move is lexicographically smaller. This implies that a pure NE is reached
after a finite number of beneficial moves.

Assume that job j can benefit by migrating from Ma to Mb. The move decreases the load on
Ma and increases the load on Mb. Before the move Lb+pj + δ < La if Mb ̸= s0(j) or Lb+pj < La
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if Mb = s0(j), as otherwise, j would not benefit from the move. In particular La > Lb. Combining
this with the fact that the load on machines other than Ma,Mb is not changed, we get that the
number of machines with load at least La is decreasing. Therefore, the improvement step yields
a sorted load vector that is lexicographically smaller than (L1, . . . , Lm1).

Consider the following specific application of better-RD:
Two-phase max-length best-RD: In the first phase all the jobs assigned to machines in M ′ are
activated. In the second phase all the jobs (now assigned to M1) are activated in a non-increasing
order of processing time pj without taking into account the extension penalty. In both phases,
each job performs its best move.

We first demonstrate that unlike the ‘adding machines’ scenario, when machines are removed,
a single phase of max-length best-RD might not end up in a NE: Consider the initial schedule
on m0 = 4 machines given in Figure 4(a). Assume that the two right machines are removed and
that δ = 1.

1.5

4

2
1+ε

M1 M’

1.5 1+ε

M1 M’ M1 M’

2

M1

(b) (c)(a) (d)

2

4+δ

4+δ

1+ε+δ

1.5+δ1.5 +δ

1+ε
2

4+δ

Figure 4: An example of single phase max-length best-response that does not converge to a NE.

The job of length 4 is the first to be activated by max-length best-response. It must move
to a machine in M1 and its best-response is to join the machine with load 1.5 (Figure 4(b)).
The job of length 2 is not interested in moving. Next, the job of length 1.5 moves (Figure 4(c)),
and finally, the job of length 1 . Figure 4(d) gives the schedule after one phase of max-length
best-response. This schedule is not NE, as the job of length 1.5 would benefit from returning to
its initial location. Thus, a single phase of max-length best-response is not guaranteed to end up
in a NE assignment.

However, linear time convergence to a NE is guaranteed by the above two-phase max-length
best-RD.

Theorem 3.2 Two-phase max-length best-RD leads to a pure NE schedule.

Proof: We first show the following claim.

Claim 3.3 The minimal load does not decrease during the second phase.
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Proof: We show that the minimal load does not decrease as a result of any move of a job j in
the second phase. Assume that j moves from Ma to Mb. Denote by L0

i , L
1
i the loads on machine

Mi before and after the move of job j, respectively. We show that min{L0
a, L

0
b} ≤ min{L1

a, L
1
b}.

Clearly, the load on any machine other than a,b does not change.
If s0(j) ∈ M1 then Ma = s0(j). The move is beneficial for j, thus, L0

b+pj+δ < L0
a. Since Mb is

the best response of j, min{L0
a, L

0
b} = L0

b . In addition, L1
a = L0

a−pj , L
1
b = L0

b +pj + δ < L0
a, thus,

L0
a − pj > L0

b + δ. We get, min{L1
a, L

1
b} = min{L0

a − pj , L
0
b + pj + δ} ≥ min{L0

b + δ, L0
b + pj + δ} ≥

min{L0
a, L

0
b}.

If s0(j) ∈ M ′, then L0
b + pj + δ < L0

a. Therefore, min{L0
a, L

0
b} = L0

b ≤ min{L0
a − pj − δ, L0

b +
pj + δ} = min{L1

a, L
1
b}.

We show that during the second phase, once a job j was activated and perform its best
response, it never has a beneficial move again. Assume by contradiction that the claim is false
and let j be the first job for which a second beneficial move exists. We distinguish between two
cases:

1. s0(j) ∈ M ′. Assume that on its first move in the second phase, j migrated from Ma to Mb.
Job j might leave Mb only if for some machine Mc it holds that Lc ≤ Lb− pj − δ. By Claim
3.3, If the load on Mb does not increase after the join of job j, there is no machine Mc for
which Lc ≤ Lb − pj − δ.

We show that even if the load on Mb increases after the join of job j, there is no machine
Mc for which Lc ≤ Lb − pj − δ. Assume that the load on Mb increased due to a join of job
k. Denote by t′ the time after the move of job k to Mb. Mb ̸= s0(k) since we assume that
j is the first job that is migrating twice in the second phase. Since jobs are activated in
non-increasing order of their length it holds that pj ≥ pk. Therefore, for any machine Mc,

Lt′
b ≤ Lt′

c + pk + δ ≤ Lt′
c + pj + δ.

Thus, Lt′
b − pj − δ ≤ Lt′

c .

2. s0(j) ∈ M1. The proof for this case is identical to the proof of Theorem 2.1.

3.2 Equilibrium Inefficiency

In this section we analyze the price of stability and the price of anarchy with various initial states
and convergence algorithms. We show that the results differ from the classical load balancing
game as well as from the machines’ addition scenario.

We note that by the discussion in Section 2.2, the PoS of the selfish load rebalancing game with
removed machines and any job extension penalty is 1. As shown in Theorem 2.5, for machines’
addition, the PoA is unbounded if the NE is not reached by performing beneficial migrations. The
same example (or a similar one, if we add a request that the removed machines are non-empty)
is valid also when the modification involves machines’ removal. On the other hand, by assuming
the NE is reached by better-RD, we can bound the PoA.

Theorem 3.4 The PoA assuming that s0 is a NE and the modified NE is reached by better-RD
is at most m1.
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Proof: Let n′ be the number of jobs assigned to M ′ in s0. It is easy to observe that along
the application of better-RD, Lmax ≤

∑
j pj + n′δ. Let P =

∑
j pj + n′δ. Thus, P is the maximal

load that can be reached. Since n′ job extensions are inevitable, we have OPT ≥ P
m1

. Therefore,

PoA ≤ P
P/m1

= m1.

The above analysis is tight for every m1 ≤ m′, such that m1|m′.

Theorem 3.5 For every m1 ≤ m′, m1|m′, and any ρ > 0. There exists an instance with m′

removed machines and m1 remaining machines for which the PoA of the game, assuming the NE
is reached by better-RD is at least m1 − ρ.

Proof: Given ρ,m1 ≤ m′, m1|m′, let B = m1(m1−1)
m′ρ − m1

m′ . Let ε = 1
Bm′(m1−1) . Also, let

δ = 1− ε and Ma be the first machine in M1.
Consider the schedule s0 in which there are 1

ε jobs of length ε, forming load 1 on Ma, and a
single job of length 1 on every other machine in M1. On every machine in M ′ there is a single
job of length B − δ = B − 1 + ε. Note that s0 is a NE.

We present the construction of the lower bound in Figure 5. In this instance m0 = 3 and
m′ = 3. The initial assignment is given in Figure 5(a).

B-δB-δB-δ

M1 M’

11

B

M1

B

M1

BBB

11

(a) (b) (c)

ε’s ε’s

B

Figure 5: An instance achieving the maximal possible PoA by performing better-RD. (a) the initial
assignment, (b) the worst NE, and (c) the best NE.

In a possible sequence of moves, all jobs from M ′ move to Ma. After each move of a job j from
M ′ to Ma, some ε-jobs that were assigned on Ma move to the other machines in M1. The amount
of ε-jobs that migrate to each of the remaining machines in M1 is B − 1. After (B − 1)(m1 − 1)
ε-jobs migrate, each machines’ load increases by B−1 and the machines in M1 are balanced. After
M ′ such iterations, we reach a NE and the makespan is Lmax ≤ ε1ε + (B − δ + δ)m′ = 1 + Bm′.
The final schedule s is shown in Figure 5(b).

In an optimal schedule, since m1|m′ the B − δ jobs spread equally on M1. The load on each
machine is OPT = 1+ m′

m1
B = m1+Bm′

m1
(see Figure 5(c)). The ratio between the maximal load in

the two schedules is 1+Bm′
m1+Bm′

m1

= m1 − m1(m1−1)
m1+Bm′ . The value of B was selected such that this is at

least m1 − ρ.

14



While the PoA for arbitrary better-RD is m1, a smaller bound can be shown if the NE is
reached by two-phase better-RD. In the first phase, all the jobs that are assigned to machines in
M ′ are activated, each performing its best move to a machine in M1. In the second phase, all the
jobs (now assigned to M1) are activated, possibly several times, in an arbitrary order. As this is
a specific application of better-RD, convergence to a NE is guaranteed.

Theorem 3.6 The PoA assuming that s0 is a NE and the modified NE is reached by two-phase
better-RD is at most 2− 1

m1
.

Proof: Denote by L1
max, L

2
max the maximal load on machines in M1 after the first and the

second phase respectively. Since only beneficial moves are performed during the second phase,
we have L2

max ≤ L1
max. Thus, Lmax = L2

max ≤ L1
max. We bound L1

max as follows. Let Ma be a
machine with load L1

max after the first phase. We distinguish between two cases.

L1
max is determined by a single job j. 1. If L1

max = pj for some job j, then j is the longest
job and s0(j) ∈ M1. Since OPT ≥ maxk pk = pj , then the PoA in this case is 1.

2. If L1
max = pj + δ, then s0(j) ∈ M ′. Clearly, j must migrate in any assignment, thus

OPT ≥ pj + δ, implying PoA = 1.

L1
max is determined by two or more jobs. 1. If all the jobs on Ma were assigned to Ma

also in s0, then L1
max ≤ L0

max. By the PoA bound on regular scheduling game L0
max ≤

(2 − 1
m1

)OPT 0. Also, OPT 0 ≤ OPT because the processing time of some of the jobs

increased while the number of machines decreased. Therefore, L1
max ≤ (2− 1

m1
)OPT .

2. If some jobs on Ma are extended, let j be the shortest extended job on Ma. Let
P =

∑
j pj + n′δ. Since we consider the maximal load after the first phase, s0(j) ∈ M ′

and OPT ≥ pj + δ.

Since j performed its best move from M ′ in the first phase, then for every machine
i, La ≤ Li + pj + δ at the time of the move of job j. Since the minimal load on
machines in M1 does not decrease during the first phase, j would not have a beneficial
move at the end of the first phase. Thus, L1

maxm1 ≤ P + (m1 − 1)(pj + δ), then
L1
max ≤ P

m1
+ m1−1

m1
(pj + δ) ≤ OPT + m1−1

m1
OPT ≤ 2m1−1

m1
OPT . We conclude that the

PoA ≤ 2m1−1
m1

= (2− 1
m1

)OPT .

In both cases, we get Lmax ≤ L1
max ≤ (2− 1

m1
)OPT .

The above analysis is tight even for two-phase best-RD.

Theorem 3.7 For any m1 > 1,m′ > 2, ρ > 0, there exists an initial NE schedule for which the
PoA of a schedule achieved by two-phase best-RD is at least 2− 1

m1
− ρ.

Proof: Given ρ, let z = ⌊m1−1
m′−1 ⌋. In addition, let ε ≤ ρm1

z(2−ρ) so that zε ≤ 1 and δ = 1− ε.
In the initial assignment, m1 − 1 machines in M1 are assigned a single job of length m1 − 1

and one machine, Ma, in M1, is assigned z jobs of length ε. The first machine in M ′ is assigned
a single job of length m1 − δ and on each of the other machines in M ′ there are z or z+1 jobs of
length ε, such that there are m1−1 jobs of length ε on all M ′ machines. This schedule guarantees
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that the jobs of length ε are balanced and do not have a beneficial move. The longer jobs are also
stable since each is assigned to a dedicated machine. Therefore, the initial schedule is a NE.

We present the construction of the lower bound in Figure 6. In this instance m0 = 6 and
m′ = 2. The initial assignment is given in Figure 6(a).

-1-1-1

M1 M’

ε’s

-δ

ε’s

-1-1-1

M1

-1-1-1

ε’s
ε+δ

M1

(a) (b) (c)

ε+δ

ε’s ε+δ ε+δ

ε+δ
ε+δ

Figure 6: An instance achieving the maximal possible PoA by performing two-phase best-RD. (a) the
initial assignment, (b) the worst NE, and (c) the best NE.

Assume that m′ machines are removed and two-phase best-RD is performed. A possible NE is
a one in which, in the first phase, the ε-jobs migrate to Ma and the job of length m1− δ migrates
to a different machine Mb in M1 (see Figure 6(b)). The load on Ma is (m1 − 1)(ε+1− ε) + zε =
m1−1+zε. The load on Mb is m1−1+(m1−1+ε+1−ε) = 2m1−1. In the second phase no job
migrates since the load on the other m1−2 machines of M1 is m1−1. Therefore, Lmax = 2m1−1.

On the other hand, the following is an optimal assignment (see Figure 6(c)): The long job
on M ′ migrates to Ma and each of the ε-jobs migrates to a different machine in M1. The load
on Ma is (m1 − 1 + ε + 1 − ε) + zε = m1 + zε. The load on each other machine in M1 is
m1 − 1+ (ε+1− ε) = m1. The ε-jobs on Ma do not want to migrate because it will not improve
their cost.

The ratio between the maximal loads of the two assignments is 2m1−1
m1+zε = 2− 1

m1+zε −
2zε

m1+zε ≥
2− 1

m1
− 2zε

m1+zε . The value of ε was selected such that the PoA is more than 2− 1
m1

− ρ.
Finally, we bound the PoA assuming the initial schedule is not a NE. The upper bound proof

is similar to the proof of Theorem 2.8. The lower bound follows from Theorem 3.5.

Theorem 3.8 If the initial assignment is not necessary a NE, and the modified schedule is reached
by better-RD, then the PoA is at most m1 and this is tight.

4 Analysis of Coordinated Deviations

In this section we assume that agents can coordinate their strategies and perform a coordinated
deviation. Recall that a set of players Γ ⊆ N forms a coalition if there exists a move where each
job j ∈ Γ strictly reduces its cost. A schedule s is a strong equilibrium (SE) if there is no coalition
Γ ⊆ N that has a beneficial move from s.

It is not difficult to see (using the arguments used for the classic load balancing game [2]) that
for any instance of the dynamic game, a SE exists. In particular, an assignment in which the
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vector of loads is lexicographically minimal is a SE. On the other hand, as we show, finding a SE
schedule, or deciding whether a NE schedule s is a SE is NP-hard. Moreover, given a set of jobs,
it is NP-hard to determine whether this set has a beneficial coordinated deviation.

Theorem 4.1 Let s be a NE schedule in a system after a modification took place. For any δ ≥ 0,
it is NP-hard to determine whether s is a SE.

4.1 Equilibrium Inefficiency

We present tight bounds for the strong price of anarchy. By the discussion in Section 2.2, the
strong price of stability is 1.

Theorem 4.2 The SPoA of load rebalancing games with uniform extension penalty with added
or removed machines is at most 3.

Proof: Denote the initial schedule by s0 and the SE schedule by s. Let Lmax(s0), Lmax(s) be
the makespan of schedule s0 and s respectively. If δ > OPT , we distinguish between two cases.

1. Adding machines: If δ > OPT , then in the optimal solution no job migrates. Thus,
Lmax(s0) = OPT . We show that s = s0, which clearly implies that s is optimal. As-
sume that s ̸= s0. Each of the jobs for which s(j) ̸= s0(j) has cost larger than δ in s. Since
δ > OPT = Lmax(s0), all these jobs form a coalition for which returning to s0 is a beneficial
move, contradicting the assumption that s is SE.

2. Removing machines: If no job was assigned on any of the m′ removed machines in s0, then
the analysis of ”adding machines” is valid. Otherwise, at least one job must migrate in the
optimal solution. This job’s cost is at least pj + δ. Contradicting the fact that OPT < δ.

Otherwise, δ ≤ OPT . It is easy to observe that In any SE, at least one job has cost at
most OPT, as otherwise, all jobs form together a coalition that prefers the optimal schedule. We
distinguish between two cases:

1. Lmax(s) is determined by a single job j. First, is Lmax(s) = pj for some job j, then the
schedule is optimal since OPT ≥ maxk pk = pj . Second, if Lmax(s) = pj + δ then since
OPT ≥ maxk pk = pj , we have Lmax(s) ≤ OPT + δ ≤ 2OPT < 3OPT .

2. Lmax(s) is determined by two or more jobs. Let j be the job with the smallest processing
time on a machine with load Lmax(s). Let Lmin(s) be the machine with the minimal load.
It holds that Lmax(s) ≤ Lmin(s) + pj + δ, since the schedule is a NE. Since pj ≤ OPT ,
δ ≤ OPT and Lmin(s) ≤ OPT as observed above, we have Lmax(s) ≤ Lmin(s) + pj + δ ≤
OPT +OPT +OPT = 3OPT .

We show that the above analysis is tight even when the initial schedule is a SE in the cases
of adding and removing machines. For simplicity, the instances below are described for specific
values of m0 and m′. It can be generalized by scaling and/or adding dummy jobs.
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Theorem 4.3 For any ρ > 0, there exists an instance with added machines for which SPoA ≥
3− ρ.

Proof: Given ρ, let ε < 1 be a small constant and let B be an integer such that ρ ≥ 4ε
B+ε . Fix

δ = B − ε. The initial schedule, on m0 = 3 machines, is given in Figure 7(a). Note that each
machine accommodates one long job of length B and one tiny job of length ε (job-lengthes indices
in the figure denote s0(j) - to help us follow the migrations). Since the load is perfectly balanced,
s0 is a strong equilibrium. Assume that m′ = 2 machines are added. Consider the schedule s
given in Figure 7(b). We have Lmax(s) = 2B + δ = 3B − ε.

M’

ε1 ε2 ε3
M0 M0

ε3
M’

(a) (b) (c)
M0

Figure 7: An instance achieving SPOA = 3. (a) the initial assignment, (b) a possible SE, and (c) the
best SE.

We show that s is a SE by showing that no job can be part of a coalition. Note that the
current cost of each ε-job is ε+ δ = B, therefore, no job will join an ε-job on its current machine.
Moreover, an ε-job will participate in a coalition only if it returns to its original machine alone.
Therefore, after any coalitional move, three different machines will be dedicated to the ε-jobs.
Since there are three Bi jobs and two machines without ε-jobs, there is a machine with two Bi

jobs on it. At least one of which is extended. Thus, in any coalitional move, one machine has
load 2B + δ which is not beneficial for the jobs assigned to it. Thus, no coalition exists.

An optimal schedule for the modified instance is given in Figure 7(c). Lmax(OPT ) = B + ε.
Therefore, SPoA ≥ 3B−ε

B+ε = 3B+3ε
B+ε − 4ε

B+ε ≥ 3− ρ.

Theorem 4.4 For any ρ > 0, there exists an instance with removed machines such that SPoA ≥
3− ρ.

Proof: Given ρ, let ε < 1 be a small constant and let B be an integer such that ρ ≥ 4
B+ε .

Fix δ = B − ε. The initial schedule, on m1 + m′ = 5 machines, in given in Figure 8(a). Note
that the first three machines accommodate one long job of length B and the other two machines
accommodate one small job of length ε. Since there is a single job on each machine, s0 is a strong
equilibrium. Assume that m′ = 1 machines are removed. Consider the schedule s given in Figure
8(b). We have Lmax(s) = 3B − ε.
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M’
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M1M1 ε2 ε1
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M1

Figure 8: An instance achieving SPOA = 3. (a) the initial assignment, (b) a possible SE, and (c) the
best SE.

The proof that s is a SE is similar to the one in the proof of Theorem 4.3. An optimal
schedule for the modified instance is given in Figure 8(c). Lmax(OPT ) = B + ε. Therefore,
SPoA ≥ 3B−ε

B+ε = 3B+3ε
B+ε − 4ε

B+ε ≥ 3− ρ.
It is possible to provide a tighter analysis of the strong price of anarchy, by bounding this

value as a function of the ratio between δ and OPT . The proof of the following theorem is similar
to the proof of Theorem 4.2. The examples in the proofs of Theorem 4.3 and 4.4 show that this
bound is tight. Moreover, in Appendix B we show that this analysis is tight even if the initial
schedule is a SE, and the final SE is reached by a sequence of coalitional improvement steps.

Theorem 4.5 The SPoA of load rebalancing games with uniform extension penalty is at most
2 + δ

OPT .

5 Summary and Future Work

We considered a dynamic variant of the classic load balancing game, in which machines are added
or removed and job migrations are associated with job’s extension

To the best of our knowledge, these are the first results considering games with migration costs.
We provided answers to the basic questions arising in this model. Specifically, we explored the
existence and calculation of Nash equilibrium and strong equilibrium and provided tight bounds
for NE and SE inefficiency - in general and under various dynamics. Our results show that the
existence of migration penalty might lead to poor stable schedules, however, if the modification
is a result of a sequence of improvement steps or, better, if the sequence of improvement steps
can be supervised in some way (by forcing the jobs play in a specific order, or select their best
response) then the modified schedule approximates well an optimal one, with approximation ratio
similar to the classic load balancing game. Thus, while migration costs discourage changes and
increase the stability of any given configuration, it is still guaranteed that any stable configuration
that is reached by natural dynamics has a reasonable social cost.
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Possible directions for future work include the study of heterogenous systems, in particular
unrelated machines, or non-uniform extension penalty. That is, for each i, i′, j we are given an
extension parameter δi,i′,j such that job j is extended by δi,i′,j if it migrates from machine i to
machine i′. Another interesting variant is proportional extension, i.e., a migration of job j extends
its processing time from pj to pj(1 + δ).

Our analysis of coordinated deviation show that the SPoA heavily depends on the value of δ.
Another direction for future work is to analyze instances in which δ is bounded by the instance
parameters, e.g., when δ ≤ pmin. Analyzing equilibrium inefficiency with respect to the objective
of minimizing the total players’ cost is another possible direction.

Finally, in our model a migration of job j affects all the jobs assigned to j’s target machine.
Another possible game can be defined by assuming individual penalties. Specifically, migrations
are associated with a cost, but this cost is covered by the job and does not affect other jobs. The
cost of a job j assigned to machine i is Li if i = s0(j) and Li + δ otherwise, where the load is
the total processing time of jobs assigned to machine i. With individual penalties we can also
consider accumulated migration costs – applied to jobs performing multiple migrations during
better-RD. Such a model corresponds to systems in which the physical migration is associated
with cost, unlike our model that suit systems in which the cost corresponds to some preprocessing
or machine’s set-up time.
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[5] A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. In ACM Transactions on Algo-
rithms, vol.3(1), 2007

[6] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to Nash equilibria. In ICALP, 2003.

[7] M. Feldman and T. Tamir. Conflicting congestion effects in resource allocation games. Journal of
Operation Research. vol. 60(3), pages 529–540, 2012.

[8] A. Fiat, H. Kaplan, M. Levi, and S. Olonetsky. Strong Price of Anarchy for Machine Load Balancing.
In ICALP, 2007.

[9] G. Finn and E. Horowitz. A linear time approximation algorithm for multiprocessor scheduling.. In
BIT, vol. 19(3), pages 312–320, 1979.

[10] D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis. The structure and com-
plexity of Nash equilibria for a selfish routing game. In ICALP, 2002.

[11] R.L. Graham. Bounds for Certain Multiprocessing Anomalies. Bell Systems Technical Journal,
45:1563–1581, 1966.

20



[12] R.L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl. Math., 17:263–269, 1969.

[13] D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling problems:
Practical and theoretical results. Journal of the ACM, 34(1):144–162, 1987.

[14] E. Koutsoupias and C. Papadimitriou. Worst-case Equilibria. Computer Science Review, 3(2): 65-69,
1999.

[15] C. Papadimitriou. Algorithms, Games, and the Internet. In STOC, 2001.
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A Machines’ Addition - Lower Bound for the PoA

Let m′ = km0 + α for integers k and α < m0. By Theorem 2.6, we have that the PoA is at most
2 + m′−1

m0
= 2 + m0k+α−1

m0
= k + 2 + α−1

m0
. For α = 1 and any k, by theorem 2.7, the bound is

tight. We turn to consider other values of α and k. Assume first that k = 0, that is, the number
of added machines is smaller than the number of initial machines.

Theorem A.1 For any 1 < m′ < m0 and ρ > 0, there exists an input such that PoA > 2 +
3m′−m0−2

2m0+1 − ρ.

Proof: Given ρ, 1 < m′ < m0, let B be an integer such that ρ ≥ 6(m0+m′)
(B+1)(2m0+1) . In addition, let

δ = 1− ε and ε = 1
2Xm′ where X = B · m0+m′

2m0+1 .

The input consists ofm0+m′ long jobs of sizeX, m0+m′ medium jobs of size Y = X ·m0−m′+1
m0+m′ ,

and 1
ε tiny jobs of size ε. In the initial assignment, one machine, M1, is assigned three jobs of

length X. Additional m′ − 2 machines are assigned two jobs of length X each, and each of the
remaining m0 −m′ + 1 machines is assigned a single job of length X. In additions, each of these
m0−m′+1 machines is assigned m0+m′

m0−m′+1 medium jobs1. Note that Y · m0+m′

m0−m′+1 = X, therefore,
the total load on every machine M2, . . . ,Mm0 is 2X. Finally, the tiny jobs are assigned in a
balanced way on M2, . . . ,Mm0 .

We present the construction of the lower bound in Figure 9. In this instance m0 = 4 and
m′ = 3. The initial assignment is given in Figure 9(a). It is easy to verify that this assignment
is a NE. The most loaded machine, M1, has load 3X. All other machines are balanced and have
load at least 2X. Since the shortest job on M1 has length X, no job has a beneficial move.

Assume that m′ machines are added and improving steps are performed. A possible NE is a
one in which the long and the medium-size jobs remain on M0 and every new machine is assigned
1

m′ε = 2X tiny jobs. The load on the first machine is 3X. The load on each of the other m0 − 1
machines of M0 is 2X. The load on every new machine is 2X(δ + ε) = 2X. The maximum load
is 3X - achieved on the first machine. This assignment is a NE as the shortest job on the most

1If m0+m′

m0−m′+1
is not an integer, it is possible to replace at most m0 −m′ +1 medium jobs each by two jobs whose

total size is Y in a way that the load on the machines is balanced (see in Figure 9(a)).
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Figure 9: An instance achieving a high PoA for m′ < m0. (a) the initial assignment, (b) the worst NE,
and (c) the best NE.

loaded machine has length X - which is exactly the gap from the load on all other machines. Also,
the other machines are perfectly balanced, therefore no migrations are beneficial.

On the other hand, a better possible assignment results from the following migrations: The
tiny jobs remain on M0. Every new and original machine is assigned one long job and one medium
job. The total load on every new machine is X + Y + 2δ = B + 2δ < B + 2. The total load on
every original machine is at most X+Y +δ+1 < B+2. The addition of δ is due to the migration
of a medium job, the addition of 1 is due to the tiny jobs2.

The ratio between the maximal loads of the two assignments is 3X
B+2 . The value of B was

selected such that this is more than 2 + 3m′−m0−2
2m0+1 − ρ.

For k ≥ 1 and α > 1, the worst PoA we were able to get is the following:

Theorem A.2 For m′ > m0 and every ρ > 0, there exists an input such that PoA > k + 2 +
(α−1)(k+3)−m0+1

m0(k+2)+1 − ρ.

Proof: Given ρ,m0,m
′ = km0 + α, k > 0, α < m0, let B be an integer such that ρ ≥

2(k+3)(m0+m′)
(B+2)(m0(k+2)+1) . In addition, let δ = 1− ε and ε = 1

(k+2)Xm′ where X = B · m0+m′

(k+2)m0+1 .

The input consists of m0+m′ long jobs of size X, m0+m′ medium jobs of size Y = X · 1−α
m0+m′ ,

and 1
ε tiny jobs of size ε. In the initial assignment, one machine, M1 is assigned k + 3 jobs of

length X. Additional α − 1 machines are assigned k + 2 jobs of length X each, and each of the
remaining m0−α machines is assigned a single job of length X. In additions, each of these m0−α
machines is assigned m0+m′

m0−α medium jobs3 Note that Y · m0+m′

m0−α = X, therefore, the total load on
every machine M2, . . . ,Mm0 due to long and medium jobs is (k + 2)X. Finally, the tiny jobs are
assigned in a balanced way on M2, . . . ,Mm0 .

We present the construction of the lower bound in Figure 10. In this instance m0 = 3 and
m′ = 5, thus, k = 1 and α = 2. The initial assignment is given in Figure 10(a). It is easy to

2If some medium jobs were replaced by two jobs, it is possible to ‘unite’ these two parts in the assignment. It
would still hold that a single migrating job is assigned on each initial machine.

3If m0+m′

m0−α
is not an integer, it is possible to replace at most m0 − α medium jobs each by two jobs whose total

size is Y , in a way that the load on the machines is balanced.
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verify that this assignment is a NE. The most loaded machine, M1, has load (k + 3)X. All other
machines are balanced and have load at least (k + 2)X. Since the shortest job on M1 has length
X, no job has a beneficial move.
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Figure 10: An instance achieving a high PoA for k = 1, α21. (a) the initial assignment, (b) the worst NE,
and (c) the best NE.

Assume that m′ machines are added and improving steps are performed. A possible NE is a
one in which the long and the medium-size jobs remain on M0 and every new machine is assigned
1

m′ε = (k+2)X tiny jobs. The load on the first machine is (k+3)X. The load on each of the other
m0 − 1 machines of M0 is 2X. The load on every new machine is (k + 2)X(δ + ε) = (k + 2)X.
The maximum load is (k + 3)X - achieved on the first machine. This assignment is a NE as the
shortest job on the most loaded machine has length X - which is exactly the gap from the load
on all other machines. Also, the other machines are perfectly balanced, therefore no migrations
are beneficial.

On the other hand, a better possible assignment results from the following migrations: The
tiny jobs remain on M0. Every new and original machine is assigned one long job and one medium
job. The total load on every new machine is X + Y + 2δ = B + 2δ < B + 2. The total load on
every original machine is at most X+Y +δ+1 < B+2. The addition of δ is due to the migration
of a medium job, the addition of 1 is due to the tiny jobs4.

The ratio between the maximal loads of the two assignments is (k+3)X
B+2 . The value of B was

selected such that this is more than k + 2 + (α−1)(k+3)−m0+1
m0(k+2)+1 − ρ.

The lower bounds in Theorems A.1 and A.2 do not match the upper bound in Theorem 2.6.
We believe that the upper bound can be reduced when α ̸= 1.

B Coordinated Deviations - Lower Bound for the SPoA

We show that the bound SPoA ≥ 2 + δ
OPT is tight even if the initial schedule is a SE, and the

final SE is reached by a sequence of coalitional improvement steps.

4If some medium jobs were replaced by two jobs, it is possible to ‘unite’ these two parts in the assignment. It
would still hold that a single migrating job is assigned on each initial machine.
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Theorem B.1 For every ρ > 0, there exists an instance with added machines such that SPoA ≥
2 + δ

OPT − ρ.

Proof: We show an instance with m0 = 4 initial machines and m′ = 8 added machines. By
scaling and adding dummy jobs, this example can be generalized to other values of m0,m

′. Given
ρ, let B be an integer such that ρ ≥ 2

B+1 . Select δ, δ′, ε such that δ = δ′ − ε, z = B
δ′ is an even

integer at least 6 and ε = 1
2(z+1) . For example, given ρ = 0.1, it is possible to select B = 20,

δ′ = 2, z = 10 and ε = 1
22 . The initial schedule is given in Figure 11(a). Note that 1/ε jobs of

length ε are assigned on the fourth machine. The first machine has load 3B − 2δ + 1 + 2ε, the
other three machines have load 3B − 2δ + 1.

M0 +1

M’

+ε

- δ

- δ

- δ

- δ

- δ

- δ

- δ

’s

(a) (b)

Figure 11: An instance achieving SPOA = 2 + δ
OPT . (a) the initial assignment, (b) the best SE.

Since Lmax(s0) = Lmin(s0)+2ε and the shortest job on Lmax(s0) is B+ε−δ, s0 is clearly a NE.
Moreover, since all the other machines are balances, it is also a SE. Assume that m′ = 8 machines
are added. Figure 11(b) presents an optimal schedule after the modification. Lmax(OPT ) = B+ε.
Figure 13 presents a possible sequence of coalitional improvement moves.

First, the ε-jobs migrate to two new machines. After this move, two M ′ machines have z + 1
jobs of length ε + δ each, forming the load of (z + 1)(ε + δ) = (z + 1)δ′ = (Bδ′ + 1)δ′ = B + δ′.
Two jobs migrate from machines M0(2), M0(3), M0(4), each to an empty machine in M ′. The
schedule after the first move is shown in Figure 13(a).

Next, the B1+ ε job performs an improvement step and moves from M0(1) to M0(2), forming
the schedule in Figure 13(b). Then, the B2 job performs an improvement step and moves from
M0(2) to M0(3), forming the schedule in Figure 13(c). The next move is of the coalition consisting
of the two B1 jobs that are currently scheduled on M0(1) and z jobs of length ε that are scheduled
on the machines in M ′ ( z2 jobs of each machine in M ′). The z jobs of length ε migrate to M0(1)
and form the load of z(ε + δ) = zδ′ = B. The jobs benefit from the move since they previously
paid B + δ′. The B1 + ε − δ and B1 + 1 − δ jobs, each migrate to the a different machine
in M ′ that the ε-jobs left. Since z

2 is at least 3, the resulting load on these machines is at most
B+δ′−3(ε+δ) = B−2δ′. The B1+ε−δ job benefits from the move since it currently pays at most
B−2δ′+B+ε = 2B+ε−2δ−2ε = 2B−ε−2δ instead of 2B+1+ε−2δ. The B1+1−δ job benefits
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from the move since it currently pays at most B−2δ′+B+1 = 2B+1−2δ−2ε = 2B+1−2ε−2δ
instead of 2B + 1 + ε− 2δ. The schedule after the move is shown in Figure 13(d).

The final move is of ε-jobs that remained on M ′. They prefer to return to their original
machine, M0(4), and pay B + z+2

2(z+1) . The final schedule, s′, is shown in Figure 13(e).

Claim B.2 The schedule s′ is an SE.

Proof: Consider the B4 job that is scheduled on M0(4), it does not want to participate in any
coalition since it reached its minimal cost on M0(4) even with the other ε-jobs. Therefore, the
ε-jobs that are scheduled on M0(1) cannot return to M0(4). If there is a coalition that does not
includes the ε-jobs from M0(1), then there is a load of B on at least two machines. Since there
are 11 jobs of length B that may participate in the coalition and 9 other machines, after the move
there would be at least one machine with two Bi jobs on it. The only jobs willing to participate
in such a coalition are B2 and B3 that are scheduled on M0(3). Thus, no coalition exists.

If there is a coalition that includes the ε-jobs from M0(1), then they occupy two machines
by themselves (without any Bi job). Since there are 11 jobs of length B that may participate in
the coalition and 8 remaining machines, after the move there would be at least one machine with
two Bi jobs on it. The only jobs willing to participate in such a coalition are B2 and B3 that are
scheduled on m0(3). Thus, no coalition exists.

An optimal schedule for the modified instance is given in Figure 11(b). Lmax(OPT ) = B+1.
Therefore,

SPoA ≥ 2B + δ

OPT
=

2B + 2

OPT
+

δ

OPT
− 2

OPT
=

2B + 2

B + 1
+

δ

OPT
− 2

B + 1
= 2 +

δ

OPT
− ρ.

This example can be generalized for any m0 ≥ 4 and m0|m′.
Next, we show that the bound of 2+ δ

OPT is tight also in the case of machines’ removal where
the initial schedule is a SE.

Theorem B.3 For any ρ > 0, there exists an instance with removed machines for which SPoA ≥
2 + δ

OPT − ρ.

Proof: Let m0 be an odd integer at least 5. Let m1 = m0+3
2 . Given ρ, let B be an integer

such that ρ ≥ 2
B+1 . Let δ

′|B and δ = δ′ − ε where ε = δ′

B . The initial schedule, on m0 = m1 +m′

machines is given in Figure 12(a). Note that there is a single job on each machine except for the
fourth machine that is assigned 1

ε jobs of length ε. Each of the machines 5, . . . ,m1 is assigned a
single job of length 1. And each machine m1, . . . ,m0, (the m′ rightmost machines) is assigned a
single job of length B − δ. Note that the fourth machine is the only machine with more than a
single job, and it has the minimum load, thus s0 is a SE. Assume that the rightmost m′ machines
are removed. Consider the schedule s′ given in Figure 12(b). In s′, each of the jobs from M ′

migrates to a different machine from 4, . . . ,m1. The ε-jobs are scheduled on the third machines
and B2, B3 migrate to machines 1, 2 respectively. The maximal load in the resulting schedule is
on the first machine. We have Lmax(s

′) = 2B + δ.

Claim B.4 The schedule s′ is an SE.
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Figure 12: An instance achieving SPOA = 2B + δ. (a) the initial assignment, (b) a possible SE, and (c)
the best SE.

Proof: Assume that s′ is not a SE, therefore a coalition exists. Clearly, B′
1 will not participate

in any coalition because it reaches its minimal cost when scheduled alone on the fourth machine.
This implies that the ε-jobs will not migrate back to machine 4. If the ε-jobs participate in a
coalition, then after the move they split among at least two machines without any B-job. In such
a schedule the remaining m1 − 1 jobs of length at least B must be assigned on m1 − 2 machines.
Therefore, at least one of the machines is assigned two jobs of length at least B. No jobs except
for B1 and B2 is ready to participate in such a coalition. Clearly, B1, B2 alone cannot initiate
such a deviation.

An optimal schedule for the modified instance is given in Figure 12(c). Lmax(OPT ) = B + 1.
Therefore,

SPoA ≥ 2B + δ

OPT
=

2B + 2

OPT
+

δ

OPT
− 2

OPT
=

2B + 2

B + 1
+

δ

OPT
− 2

B + 1
= 2 +

δ

OPT
− ρ.
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Figure 13: An instance achieving SPOA = 2+ δ
OPT , where the SE is reached by a sequence of coalitional

improvement steps. The jobs forming the coalitions are in grey.
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