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A rational and selfish environment may have an incentive to cheat the system it interacts
with. Cheating the system amounts to reporting a stream of inputs that is different from
the one corresponding to the real behavior of the environment. The system may cope
with cheating by charging penalties to cheats it detects. In this paper, we formalize
this setting by means of weighted automata and their resilience to selfish environments.
Automata have proven to be a successful formalism for modeling the on-going interaction
between a system and its environment. In particular, weighted finite automata (WFAs),
which assign a cost to each input word, are useful in modeling an interaction that
has a quantitative outcome. Consider a WFA A over the alphabet Σ . At each moment
in time, the environment may cheat A by reporting a letter different from the one it
actually generates. A penalty function η : Σ ×Σ → R

�0 maps each possible false-report to
a penalty, charged whenever the false-report is detected. A detection-probability function
p : Σ × Σ → [0,1] gives the probability of detecting each false-report. We say that A is
(η, p)-resilient to cheating if 〈η, p〉 ensures that the minimal expected cost of an input
word is achieved with no cheating. Thus, a rational environment has no incentive to
cheat A.
We study the basic problems arising in the analysis of this setting. In particular, we
consider the problem of deciding whether a given WFA A is (η, p)-resilient with respect
to a given penalty function η and a detection-probability function p; and the problem of
achieving resilience with minimum resources, namely, given A and η, finding the minimal
(with respect to

∑
σ ,σ ′ η(σ ,σ ′) · p(σ ,σ ′)) detection-probability function p, such that A is

(η, p)-resilient. While for general WFAs both problems are shown to be PSPACE-hard, we
present polynomial-time algorithms for deterministic WFAs.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The environment of modern systems often consists of other systems, having objectives of their own. For example, an
e-commerce application interacts with sellers and buyers. A seller may provide a non-reliable description of the goods he
is selling. Furthermore, sellers may provide false feedback and twisted rating of their competitors. Buyers may commit to
some transaction but not accomplish it, or may provide a bid that is lower than the real value they are willing to pay,
hoping to win even with it. As another example, the environment of various service-providing systems are clients that wish
to minimize their payment. Clients’ payments may be based on their self-reports, which are usually screened but may be
false. In the same way, biased users may affect the quality of recommendation systems for various products or services.

✩ A preliminary version has appeared in “The 16th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning”, April 2010.
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The above examples demonstrate the fact that environments have two types of behaviors: the truthful behavior – the
one they would produce if they follow their protocol, and the reported behavior – the one they actually output, hoping it
would lead to a better outcome for them. While the design of systems cannot assume that the environment would take its
truthful behavior, we can assume that environments are rational, in the sense they always take a behavior that maximizes
their outcome. Mechanism design is a field in game theory and economics studying the design of games for rational players.
A game is incentive compatible if no player has an incentive to deviate from his truthful behavior [13,14].

The outcome of traditional games depend on the final position of the game. In contrast, the systems we want to reason
about maintain an on-going interaction with their environment [9], and reasoning about their behavior refer not to their
final state (in fact, much of the research in the area considers non-terminating systems, with no final state) but rather
to the language of computations that they generate. In [8], the authors study rational synthesis, where the synthesized
systems are guaranteed to satisfy their specifications when they interact with rational environments (rather than with
hostile environments that do not have objectives other than to fail the system [15]). In this paper, we suggest and study
a possible model for reasoning about incentive capacity in the context of on-going behaviors and quantitative properties.
Reporting of trustworthy information is an essential component also in service-providing systems.

Automata have proven to be a successful formalism for modeling on-going behaviors. Consider a system with a set P of
atomic propositions. Each assignment to the atomic propositions corresponds to a letter σ in the alphabet 2P . Accordingly,
a computation of the system, which is a sequence of such assignments, is a word over the alphabet 2P , and a specification
for the system is a language over this alphabet, describing the desired properties of the system. By translating specifications
to automata, it is possible to reduce questions about systems and their specifications to questions about automata [18]. For
example, a system S satisfies a specification ψ if the language that consists of exactly all the computations generated by S
is contained in the language of an automaton that accepts exactly all words satisfying ψ .

A Boolean language maps words to true or false. A qualitative language maps words to values from a richer domain [2,10].
A weighted automaton A on finite words (WFA, for short) [6,7,12,17] defines a quantitative language L : Σ∗ → R

�0 ∪ {∞}.
Technically, each transition of A has a traversal cost, each state has an acceptance cost, and the cost of a run is the sum
of the costs of the transitions taken along the run plus the acceptance cost of its last state. The cost of a word is then the
minimum cost over all runs on it (note that the cost may be infinite). Note that while the words are finite, the automata
model on-going behaviors, as the run and its cost depends on all the letters along the computation that corresponds to the
input word.

A rational and selfish environment may have an incentive to cheat the WFA and report a word different from the one
generated by its truthful behavior. The WFA may cope with cheating by charging penalties to cheats it detects. The model of
cheating and penalties that we assume is the following. At each moment in time, the environment may cheat the WFA by
reporting a letter different from the one its truthful behavior generates. A detection-probability function p : Σ × Σ → [0,1]
describes the probability of detecting each false-report. A penalty function η : Σ × Σ → R

�0 describes the penalty charged
whenever a particular false-report is detected. Thus, when the environment reports that a letter σ is σ ′ , then the WFA
detects the cheating with probability p(σ ,σ ′), in which case the environment is charged η(σ ,σ ′). The expected cost of
a word w is then the minimum, over all words w ′ of the same length as w , cost of w ′ plus the expected penalty for
reporting w to be w ′ . We say that a WFA A is (η, p)-resilient to cheating if 〈η, p〉 ensures that, for all words, the above
minimal expected cost is achieved in a cheat-free run. Thus, a dominant strategy for the environment is one that does not
cheat.

We study the basic problems arising in the analysis of this setting. First, we observe that, by linearity of expectation,
a detection probability function p and a penalty function η can be combined to a single expected-fee function θ = η ◦ p;
that is, for all σ ,σ ′ ∈ Σ , we have θ(σ ,σ ′) = η(σ ,σ ′) · p(σ ,σ ′). Accordingly, we can study θ -resilience, which simplifies
the probabilistic reasoning. Second, we make use of the fact it is possible to construct, given a WFA A and an expected-fee
function θ , a WFA Cheat(A, θ) that takes cheating into account and in which the cost of a word is its minimal possible cost
(achieved by a best cheating strategy). We show that θ -resilience to cheating is a semantic property. Thus, given a weighted
language L : Σ∗ → R

�0 ∪ {∞}, and a penalty function θ , then either all WFAs for A are θ -resilient to cheating, or none of
them is. It follows that the natural problem of translating a given WFA A that need not be θ -resilient to cheating to an
equivalent WFA that is θ -resilient to cheating is not interesting, as equivalent WFAs have the same resilience.

With these observations and constructions, we turn to study the practical problems of the setting. From the environmen-
t’s point of view, we consider the problem of finding, given A, θ , and a word w ∈ Σ∗ , a word w ′ such that the environment
can minimize the cost of w in A by reporting it to be w ′ . We show that the problem can be reduced to the problem of
finding a shortest path in a graph, which can be solved in polynomial time [5].

We then turn to study problems from the designer’s point of view. We start with the problem of deciding whether
a given WFA A is θ -resilient to cheating with respect to a given expected fee function θ . We show that the problem is
PSPACE-hard, but present a polynomial-time solution for the case A is deterministic. Our solution is based on dynamic
programming, taking into account words of increasing lengths. In particular, we show that cycles along which cheating is
beneficial (and can therefore lead to an unbounded incentive to cheat) can be detected after quadratically many iterations.

Clearly, the higher the expected fee is, the easier it is for the system to prevent cheating. In practice, penalties may be
limited by an external authority, and increasing the probability of detecting cheats requires resources. Consider a WFA A and
two expected-fee functions θ1 and θ2 such that θ1 � θ2 (that is θ1(σ ,σ ′) � θ2(σ ,σ ′) for all σ ,σ ′ ∈ Σ ). If A is θ1-resilient
to cheating, then A is clearly also θ2-resilient to cheating, yet θ1 achieves resilience more efficiently. In particular, θ1 can
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be obtained from θ2 by reducing the probability of cheat detection, hence saving on resources required for cheat detection.
Recall that θ = η ◦ p, for a penalty function η and a detection probability function p. Assuming that the penalty function η
is determined by an external authority, and that system’s resources are allocated to increase the detection probability, we
consider the following problem of minimal resources resilience: Given a WFA A and a penalty function η, find a probability
detection function p such that A is (η ◦ p)-resilient, and the detection budget, given by

∑
σ ,σ ′ η(σ ,σ ′)p(σ ,σ ′), is minimal.

Note that the probabilities in our objective function are weighted by η. This reflects the fact that detecting a cheat with
a high penalty tends to require high resources. Indeed, in practice, the higher is the responsibility of a guard, the higher
is his salary. We study the minimal resources resilience problem and show that it is PSPACE-hard. As in resilience testing,
the problem is easier in the deterministic case, for which we present a polynomial-time solution, based on describing the
problem as a linear program. Essentially, the constraints of the linear program are induced by the restrictions used in the
testing algorithm, with the expected-fee values being variables. The same method can be used in order to solve additional
minimal-budget problems, with any desired linear objective function over the detection-probability function or the penalty
function.

We also consider two variants of the setting. In the rising-penalty variant, the expected penalty for cheating increases
with the number of cheats. This variant reflects the realistic response of systems to user’s false report: allocating more
resources to cheat detection, or formally, increasing the detection probability with each detected cheat. In the bounded
cheating variant the number of times the environment can cheat or the total budget it can invest in penalties is bounded.

2. Preliminaries

In this section we give a formal description of the model we consider, and present several observations and constructions
that will be used throughout the paper.

2.1. Weighted finite automaton

Given an alphabet Σ , a weighted language is a function L : Σ∗ → R
�0 ∪ {∞} mapping each word in Σ∗ to a positive

(possibly ∞) cost. A weighted finite automaton (WFA, for short) is A = 〈Σ, Q ,�, c, Q 0, τ 〉, where Σ is a finite input alphabet,
Q is a finite set of states, � ⊆ Q × Σ × Q is a transition relation, c : � → R

�0 is a cost function, Q 0 ⊆ Q is a set
of initial states, and τ : Q → R

�0 ∪ {∞} is a final cost function. A transition d = 〈q, σ , p〉 ∈ � (also written �(q, σ , p))
can be taken when reading the input letter σ ∈ Σ , and it causes A to move from state q to state p with cost c(d). The
transition relation � induces a transition function δ : Q × Σ → 2Q , where for a state q ∈ Q and a letter σ ∈ Σ , we have
δ(q, σ ) := {p : �(q, σ , p)}. We extend δ to sets of states, by letting δ(S,a) := ⋃

q∈S δ(q,a), and recursively to words in Σ∗ ,
by letting δ(q, ε) = q, and δ(q, u · σ) := δ(δ(q, u),σ ), for every u ∈ Σ∗ and σ ∈ Σ . Note that our model does not allow
ε-transitions.

Note that a WFA A may be nondeterministic in the sense that it may have many initial states, and the transition function
may lead to several successor states. If |Q 0| = 1 and for every state q ∈ Q and letter σ ∈ Σ we have |δ(q, σ )| � 1, then A
is a deterministic WFA (for short, DWFA).

For a word w = w1 . . . wn ∈ Σ∗ , a run of A on w is a sequence r = r0, r1, . . . , rn ∈ Q n+1, where r0 ∈ Q 0 and for every
1 � i � n, we have �(ri−1, wi, ri). The run r is accepting if rn ∈ F . The cost of a run is the sum of the costs of the transitions
that constitute the run, along with the final cost.1 Formally, let r = r0, r1, . . . , rn be a run of A on w , and let d = d1 . . .dn ∈
�∗ be the corresponding sequence of transitions. The cost of r is cost(A, r) = ∑n

i=1 c(di) + τ (rn). For two indices 1 �
j1 < j2 � n, we use cost(A, r, j1, j2) to denote the cost of the sub-run leading from q j1−1 to q j2 . Thus, cost(A, r, j1, j2) =∑ j2

i= j1
c(di) The cost of w in A, denoted cost(A, w), is the minimal cost over all runs of A on w . Thus, cost(A, w) =

min{cost(A, r): r is an accepting run of A on w}. Note that while WFAs do not have a set of accepting states, runs that
reach states q for which τ (q) = ∞ have cost ∞, thus the function τ can be viewed as a refinement of the partition of
the state space to accepting and rejecting states. The weighted language of A, denoted L(A), maps each word w ∈ Σ∗ to
cost(A, w).

We assume that all states q ∈ Q are reachable in A. We assume that all states, except maybe the initial states, are not
empty, in the sense they map at least one word to a finite cost. Thus, for all q ∈ Q there is w ∈ Σ∗ such that the cost of w
in A with initial state q is in R

�0. Finally, given two WFAs A and A′ , we say that A is cheaper than A′ , denoted A � A′ ,
if for every word w ∈ Σ∗ , we have that cost(A, w) � cost(A′, w). When both A � A′ and A′ � A, we say that A and A′
are equivalent.

2.2. Input cheating and resilience of automata

Recall that a WFA induces a weighted language that maps each word to a cost in R
�0 ∪ {∞}. The environment may

cheat the system, hoping to get words accepted with a lower cost (we would use both the term “the environment cheats”

1 In general, a WFA may be defined with respect to any semiring 〈K,⊕,⊗,0,1〉. The cost of a run is then the semiring product of the weights along
it, and the cost of a word is the semiring sum over all runs on it. For our purposes, we focus on weighted automata defined with respect to the min-sum
semiring, 〈R�0 ∪ {∞},min,+,∞,0〉 (sometimes called the tropical semiring), as defined above.
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Fig. 1. The DWFA A.

and “the words cheat”). The model of cheating that we assume is the following. When the automaton runs on a word
w = w1 . . . wn ∈ Σ∗ , then in each position 1 � i � n, the word can cheat the automaton and report that the letter wi is
a different letter w ′

i ∈ Σ . Cheating has a price, and the setting includes a penalty function η : Σ × Σ → R
�0, satisfying

η(σ ,σ ) = 0, and a detection-probability function p : Σ ×Σ → [0,1] indicating the probability of catching each specific cheat.
Formally, whenever σ is reported to be σ ′ , the automaton detects the cheating with probability p(σ ,σ ′), in which case it
charges η(σ ,σ ′). The expected penalty for reporting σ to be σ ′ is therefore η(σ ,σ ′) · p(σ ,σ ′).

For two words w = w1, w2, . . . , wn and w ′ = w ′
1, w ′

2, . . . , w ′
n , the expected cost of reporting w to be w ′ is∑n

i=1 η(wi, w ′
i) · p(wi, w ′

i). Given a WFA A, a penalty function η, a detection-probability function p, and two words w, w ′
such that |w| = |w ′|, the expected cost of w in A when w is reported to be w ′ , denoted expected_ faked_cost(A, η, p, w, w ′),
is cost(A, w ′)+∑n

i=1 η(wi, w ′
i) · p(wi, w ′

i). Finally, expected_best_cost(A, η, p, w) is the lowest expected cost with which w
can be read by A (with or without cheating). Thus, expected_best_cost(A, η, p, w) = minw ′: |w ′|=|w| expected_ faked_cost(A,

η, p, w, w ′). We refer to the word w ′ with which the minimum is achieved as the cheating pattern for w .
We say that A is (η, p)-resilient to cheating if it is not worthwhile to cheat A given the penalty function η and

the detection-probability function p. Formally, A is (η, p)-resilient to cheating if for every input word w , it holds that
cost(A, w) = expected_best_cost(A, η, p, w).

Studying resilience of automata, it is convenient to consider a non-probabilistic setting in which cheats are always de-
tected. We use p1 to denote the detection-probability function satisfying p1(σ ,σ ′) = 1 for all σ ,σ ′ ∈ Σ . As argued in
Theorem 2.1 below, the probabilistic setting can be easily reduced to a non-probabilistic one. The theorem follows easily
from the linearity of expectation.

Theorem 2.1. Consider a WFA A, penalty function η, and detection-probability function p. Let θ = η ◦ p. Thus, θ :
Σ × Σ → R

�0 is such that for all σ ,σ ′ ∈ Σ , we have that θ(σ ,σ ′) = η(σ ,σ ′) · p(σ ,σ ′). Then, for every w ∈ Σ∗ , we have
expected_best_cost(A, η, p, w) = expected_best_cost(A, θ, p1, w).

Thus, by considering the penalty function θ = η ◦ p, we can reduce a probabilistic setting with η and p to a non-
probabilistic one. The cost of a word in A is still an expected one, but for simplicity of notations, we use the terms
faked_cost(A, θ, w, w ′) and best_cost(A, θ, w), which are analogue to the terms expected_ faked_cost(A, η, p, w, w ′) and
expected_best_cost(A, η, p, w), and refer to θ -resilience, rather than to (η, p)-resilience.

Example 2.2. Consider the DWFA A in Fig. 1. Every state qi in the figure is labeled by its final cost. For example,
τ (q4) = 4 and τ (q3) = x, for some x ∈ R. Every transition is labeled by the letter and cost associated with it. For exam-
ple, �(q2,b,q5) and c(q2,b,q5) = 1. Assume that the penalty function is uniform and for all σ ,σ ′ ∈ {a,b, c} with σ �= σ ′ ,
we have θ(σ ,σ ′) = 2.

The DWFA A demonstrates two of the phenomena that makes the analysis of cheating challenging. First, testing an WFA
for θ -resilience (even a DWFA, and even with a uniform θ ) may not be local. In our example, if we take x = 0, then it is
easy to see that for every three states q,q′ , and q′′ , and two letters σ and σ ′ , it holds that c(q, σ ,q′)+ τ (q′) � c(q, σ ′,q′′)+
τ (q′′) + θ(σ ,σ ′); that is, for all words of length 1 it is not beneficial to cheat, independent of the initial state. Clearly, this
is a necessary condition for A to be θ -resilient: if there are q,q′,q′′, σ , and σ ′ that violate the condition, then the word
w · σ for which δ(q0, w) = q, has faked_cost(A, θ, w · σ , w · σ ′) < cost(A, w · σ), thus best_cost(A, θ, w · σ) < cost(A, w · σ)

and w · σ has an incentive to cheat and pretend to be w · σ ′ . This condition, however, is not sufficient. For example,
cost(A′,aa) = 8 while faked_cost(A, θ,aa,bb) = 2 + 2θ(a,b) = 6. That is, aa has an incentive to cheat and pretend to be bb.

Second, A demonstrates that cheating may be beneficial only for words that are unboundedly long. To see this, note that
cost(A,bck) = k + 1 and cost(A, ck+1) = x + 1. Since cheating in the first letter costs 2, we have that best_cost(A, θ,bck) =
min(k + 1, x + 3) and best_cost(A, θ, ck+1) = min(k + 3, x + 1). Thus, the larger x is, the longer are the shortest input words
that have an incentive to cheat. In fact, since A can loop with c both at cost 4 in q5 and as cost 0 in q3, the gain in
cheating is unbounded, and it is impossible to fix a penalty function η such that A would be (η, p1)-resilient. Indeed,
whatever η(b, c) is, we can find a big enough k such that it is worthwhile for bbck to pretend to be ck+2.
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Fig. 2. The WFA A′ = Cheat(A, θ), with uniform θ = 2.

A basic challenge in the setting of rational environments is to design systems in which the environment has no incentive
to cheat. In our setting, one could ask whether a given WFA A that is not θ -resilient to cheating can be modified to an
equivalent WFA A′ that is θ -resilient to cheating. Theorem 2.3 below states that this is impossible.

Theorem 2.3. Resilience to cheating is a semantic property. That is, given a weighted language L : Σ∗ → R
�0 ∪ {∞} and a penalty

function θ , either all WFAs for L are θ -resilient to cheating, or none of them is θ -resilient to cheating.

Proof. Let A1 and A2 be two WFAs for L. Thus, for every w ∈ Σ∗ , we have that cost(A1, w) = cost(A2, w) = L(w). We
show that if A1 is not θ -resilient to cheating, then so is A2. Assume that A1 is not θ -resilient to cheating, and let w and
w ′ be such that |w ′| = |w| and faked_cost(A1, θ, w, w ′) < cost(A1, w). Recall that faked_cost(A1, θ, w, w ′) = cost(A1, w ′) +
θ(w, w ′). By the equivalence of A1 and A2, we have that cost(A1, w) = cost(A2, w) and cost(A1, w ′) = cost(A2, w ′). Hence,
since θ(w, w ′) is independent of the WFA, we also have faked_cost(A2, θ, w, w ′) < cost(A2, w), and we are done. �

Note that Theorem 2.3 applies for both nondeterministic and deterministic WFAs. Thus, nondeterminism cannot help
a WFA to cope with cheats. Note also that Theorem 2.3 considers a given penalty function θ and does not include the
possibility of achieving resilience by modifying the penalty function, possibly using the same budget. We will get back to
this problem in Section 4.

2.3. The cheating-allowed automaton

Reasoning about a WFA A and its resilience to cheating, one has to take into account the infinitely many possible
cheating patterns that A should be resilient to. In this section we show that these patterns can be modeled by a single
WFA obtained from A by adding transitions that mimic cheating.

Theorem 2.4. Consider a WFA A and a penalty function θ : Σ × Σ → R
�0 . There is a WFA A′ , with the same state space as A, such

that for every word w ∈ Σ∗ , we have that cost(A′, w) = best_cost(A, θ, w).

Proof. Let A = 〈Σ, Q ,�, c,q0, τ 〉. We define A′ = 〈Σ, Q ,�′, c′,q0, τ 〉, where the transition relation �′ and the cost func-
tion c′ are defined as follows. For every two states q,q′ ∈ Q , if there is σ ′ ∈ Σ such that �(q, σ ′,q′), then �′(q, σ ,q′) for
every σ ∈ Σ , and c′(q, σ ,q′) = minσ ′ :�(q,σ ′,q′){c(q, σ ′,q′)+θ(σ ,σ ′)}. That is, if the set Σ ′ of letters with which A can move
from q to q′ is not empty, then A′ can move from q to q′ with all letters – by reporting them to be some letter in Σ ′ . The
cost of this transition for a letter σ is calculated by taking the most beneficial replacement from Σ ′: the one that minimizes
the sum of the cost of the transition and the cost of cheating.

It is not hard to see the correspondence between the nondeterminism of A′ and the choices of cheating patterns.
Formally, for every word w , a cheating pattern w ′ for w induces a run of A′ on w whose cost is faked_cost(A, θ, w, w ′).
Likewise, every run of A′ on w induces a word w ′ that can serve as a cheating pattern for w . Hence, since the cost of w
in A′ is the minimal cost of some run of A′ on w , we have that best_cost(A, θ, w) = cost(A′, w), and we are done. �

Given a WFA A and a penalty function θ , we refer to the WFA A′ constructed in Theorem 2.4 as Cheat(A, θ). For
example, the WFA in Fig. 2 is Cheat(A, θ), for the WFA A described in Fig. 1 and θ(σ ,σ ′) = 2 for all σ ,σ ′ ∈ Σ with
σ �= σ ′ .

Corollary 2.5. For every WFA A and penalty function θ , we have that A is θ -resilient to cheating iff A � Cheat(A, θ), that is, for every
word w ∈ Σ∗ , we have that cost(A, w) � cost(Cheat(A, θ), w).

An important natural problem is to find a best strategy for the environment. In our settings, this corresponds to finding,
for a given input word w ∈ Σ∗ , a best cheating pattern for w , that is, a word w ′ , such that |w ′| = |w| and a best strategy
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for w – one that leads to a minimal cost, is to present itself as w ′ . Note that w ′ may not be unique. We show that this
problem can be solved efficiently.

Theorem 2.6. Given a WFA A, a penalty function θ , and a word w ∈ Σ∗ , the problem of finding best_cost(A, θ, w) and a cheating
pattern for it, can be solved in polynomial time.

Proof. Given a WFA A and a word w ∈ Σ∗ , it is possible to find cost(A, w) as follows (note that we refer here to cost
without cheating). If A is deterministic, we traverse the single run of A on w and find its cost. If A is nondeterministic,
we first restrict A to runs along which w is read, and then find the cheapest such run. Formally, we define the product A w
of A with a Boolean automaton with |w| + 1 states whose language is {w}. The WFA A w describes exactly all the runs of
A on w and it has no cycles. We apply to A w a shortest-path algorithm [5] and find the shortest path from an initial state
to a final state (the shortest-path algorithm can be easily modified to take into account also the final costs).

Now, given A and θ , let A′ be Cheat(A, θ). Then, for every word w , we have that best_cost(A, θ, w) = cost(A′, w), which
can be calculated as described above. Also, the run r′ of A′ on w for which cost(A′, w) = cost(r′, w) reveals the cheating
pattern. �
2.4. Limited cheating and rising penalty variants

So far, we assumed that the environment can cheat as many times as it wants. As we now show, it is not difficult to
consider variants in which this assumption is relaxed. In this section we describe two such variants. In the first, there is a
constant bound on the number of allowed cheats. In the second, there is a constant bound on the budget a word can use
for cheating. As we show below, it is possible to construct Cheat(A, θ) in these variants. Since our results are going to be
based on Cheat(A, θ), their extension to the variant settings follow.

Theorem 2.7. Consider a WFA A with n states. Let θ : Σ × Σ → R
�0 be a penalty function, and k � 1 be a bound on the number of

allowed cheats. There is WFA A′ , with n · k states, such that cost(A′, w) = best_cost(A, θ, w).

Proof. Let A = 〈Σ, Q ,�, c,q0, τ 〉. The definition of A′ is similar to the one described in the proof of Theorem 2.4, except
that now A′ consists of k copies of A, where copy i indicates that i cheats have already been made. Formally, A′ =
〈Σ, Q × {0,1, . . . ,k},�′, c′, 〈q0,0〉, τ ′〉, where �′, c′ , and τ ′ are defined as follows. For every two states q,q′ ∈ Q and letter
σ ∈ Σ , if �(q, σ ,q′) then for all 0 � i � k, we have �′(〈q, i〉, σ , 〈q′, i〉). In addition, if i < k and there is σ ′ ∈ Σ such that
�(q, σ ′,q′), then �′(〈q, i〉, σ , 〈q′, i + 1〉) for every σ ∈ Σ , and c′(〈q, i〉, σ , 〈q′, i + 1〉) = minσ ′ :�(q,σ ′,q′){c(q, σ ′,q′) + θ(σ ,σ ′)}.
Finally, for every state q ∈ Q and 0 � i � k, we have τ ′(〈q, i〉) = τ (q). �

Similarly, when the cheating budget is bounded by a constant β , we can define A′ by taking β copies of A.

Theorem 2.8. Consider a WFA A with n states. Let θ : Σ × Σ → R
�0 be a penalty function, and β � 1 be a bound on the budget

spent for cheating. There is WFA A′ , with n · β states, such that cost(A′, w) = best_cost(A, θ, w).

Another variant that can be handles by taking several copies of Cheat(A, θ) and modifying the costs in the different
copies, is the rising-penalty model. This model corresponds to increasing either the detection-probability function or the
penalties themselves; as indeed happens in practice when cheats are detected.

3. Resilience testing

In this section we study the problem of deciding, given a WFA A and a penalty function θ , whether A is θ -resilient to
cheating. Recall that A is θ -resilient to cheating if for every input word w , it holds that cost(A, w) = best_cost(A, θ, w). We
show that the problem is PSPACE-hard for WFA but can be solved in polynomial time for DWFA.

3.1. Resilience testing – hardness proof for WFA

Theorem 3.1. Consider a WFA A and a penalty function θ . The problem of deciding whether A is θ -resilient is PSPACE-hard.

Proof. The proof is by a reduction from the universality problem for NFAs, proven to be PSPACE-hard in [16]. In the
universality problem, we are given a nondeterministic (Boolean) automaton (NFA, for short) U , and we have to decide
whether L(U ) = Σ∗ . The reduction proceeds as follows. Given an NFA U , we construct a WFA A U such that AU is
0-resilient (that is, θ(σ ,σ ′) = 0 for all σ ,σ ′ ∈ Σ ) iff U is universal. Note that an automaton is 0-resilient iff no in-
put word has an incentive to cheat even if cheating is free. The idea behind the construction is that words not in L(U )

would induce words that have an incentive to cheat A U . Thus, U is universal iff no word has an incentive to cheat A U ,
so even the 0 penalties suffice to ensure resilience. Formally, let U = 〈Σ, Q ,�, Q 0, F 〉, where F ⊆ Q is a set of final
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Fig. 3. The WFA A U .

states, and let a be some letter in Σ . We assume that |Σ | > 1. We define A U to go with the letter a to a copy of U
and to go with all letters Σ \ {a} to an accepting sink (see Fig. 3). Thus, A U = 〈Σ, Q ∪ {q0,qqcc},�′, {q0}, c, τ 〉, where
�′ = � ∪ ({q0} × {a} × Q 0) ∪ ({q0} × (Σ \ {a}) × {qacc}) ∪ ({qacc} × Σ × {qacc}).

Also, for all 〈q, σ ,q′〉 ∈ �′ , we have c(〈q, σ ,q′〉) = 0 and for all q ∈ Q ∪ {q0,qqcc} we have τ (q) = 0. It is easy to see that
AU accepts (with cost 0) all words of the form a · w , for w ∈ L(U ), or of the form σ · w , for σ �= a and w ∈ Σ∗ . Accordingly,
if U is universal, then AU accepts all words in Σ∗ with cost 0, and is therefore 0-resilient. Also, if U is not universal, then
there is w /∈ L(U ) such that cost(A U ,a · w) = ∞, while faked_cost(A U ,a · w,b · w) = θ(a,b), for any b ∈ Σ \ {a}. Hence, A U
is not 0-resilient, and we are done. �
3.2. Resilience testing – a polynomial algorithm for DWFA

In this section we consider the case where A is deterministic. We show that in this case, the problem of deciding
whether A is θ -resilient, for a given penalty function θ , can be solved in polynomial time. Let A = 〈Σ, Q ,�, c,q0, τ 〉 be
a DWFA. Let n = |Q |. For a given penalty function θ , let A′ = 〈Σ, Q ,�′, c′,q0, τ 〉 be Cheat(A, θ). We describe an algorithm
for deciding whether A � A′ . By Corollary 2.5, the latter holds iff A is θ -resilient to cheating.

Our algorithm is similar to the algorithm for deciding whether a given DWFA is equivalent to a WFA in which it is em-
bodied [1]. We define a sequence of functions h0,h1, . . . : Q × Q → R ∪ {∞,−∞}, as follows.2 Intuitively, hi(q,q′) indicates
how much a word of length at most i can gain if instead of a run of A that leads to q it takes a run of A′ that leads to q′ .
This difference does not include the final costs of q and q′ . Note that there may not be words of length at most i along
which q and q′ are reachable, in which case hi(q,q′) would be −∞. Also, it may be that for all words w of length at most i,
the cheapest run in A′ that reads w and leads to q′ costs more than the run of A that reads w and leads to q, in which
case hi(q,q′) is negative.

It is easy to see that if for some i ∈ N and q,q′ ∈ Q , we have that hi(q,q′) > τ(q′) − τ (q), then there is a word of length
at most i for which cost(A, w) > cost(A′, w), and thus A �� A′ . We show that hi can be calculated efficiently, and that even
though the sequence of functions may not reach a fixed-point, it is possible to determine whether A � A′ after calculating
hi for i = 0, . . . , O (n2). Intuitively, it follows from the fact that not reaching a fixed-point after O (n2) iterations points to
cycles along which the gain of A′ with respect to A is unbounded. Finally, note that the invariant maintained in hi(q,q′)
crucially depends on A being deterministic. Indeed, when A is nondeterministic, a run that leads to q may be dominated
by a different run.

We initialize h0(q0,q0) = 0 and h0(q,q′) = −∞ for all other pairs. Indeed, 〈q0,q0〉 is the only pair of states that an empty
word might reach on A and A′ .

The calculation of hi+1, for i � 0, uses a function gi+1 : Q × Q × Σ → R ∪ {∞,−∞}. Intuitively, gi+1(q,q′, σ ) indicates
how much a word of length at most i + 1 that ends with the letter σ can gain if instead of a run of A that leads to q it
takes a run of A′ that leads to q′ . Then,

gi+1
(
q,q′,σ

) = max
p,p′:�(p,σ ,q)∧�′(p′,σ ,q′)

(
hi

(
p, p′) + c(p,σ ,q) − c′(p′,σ ,q′)). (1)

Thus, the calculation of gi+1(q,q′, σ ) considers all pairs 〈p, p′〉 ∈ Q × Q from which q and q′ can be reached, respectively,
when a is read. Since gi+1(q,q′, σ ) is the gain obtained by running in A′ instead of in A, we add to hi(p, p′) the cost of
the transition 〈p, σ ,q〉 in A and subtract the cost of the transition 〈p′, σ ,q′〉 in A′ . Now, for i � 0, we have

hi+1
(
q,q′) = max

{
hi

(
q,q′),max

σ∈Σ
gi+1

(
q,q′,σ

)}
. (2)

Therefore, the function hi can be calculated efficiently for all i � 0. For i � 0 and q,q′ ∈ Q , we say that a word w
witnesses hi(q,q′) if |w| � i and there is a run of A′ on w that leads to q′ and traversing its transitions costs hi(q,q′) less
than traversing the transitions of the run of A on w , which leads to q. Note that since the functions hi ignore the final
costs, the above refers to the cost of traversing the transitions along the runs, rather than the cost of the runs. Clearly, if
hi(q,q′) is finite, then it has at least one witness.

We can now present the algorithm for deciding whether A � A′:

2 In the definition of hi we use addition and subtraction of elements in R∪ {∞,−∞}. For every finite x ∈ R, we have ∞− x = ∞ and x −∞ = −∞. Also
∞ − ∞ = 0.
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Fig. 4. (a) A DWFA A, and (b) its corresponding automaton Cheat(A, θ), assuming θ(σ ,σ ′) = 5 for all σ �= σ ′ ∈ Σ .

1. For i = 0, . . . ,n2: Calculate hi ; if for some q,q′ ∈ Q , we have hi(q,q′) > τ(q′) − τ (q), then return (A �� A′).
2. For i = n2 + 1, . . . ,2n2: Calculate hi ; if for some q,q′ ∈ Q , we have hi−1(q,q′) < hi(q,q′), then return (A �� A′).
3. Otherwise, return(A � A′).

Example. We demonstrate an execution of the algorithm on the DWFA A appearing in Fig. 4(a). Assume that θ(σ ,σ ′) = 5
for all σ ,σ ′ ∈ Σ with σ �= σ ′ . Fig. 4(b) describes the corresponding cheating-allowed automaton Cheat(A, θ), constructed
as detailed in Theorem 2.4.

We initialize h0(q0,q0) = 0 and h0(q,q′) = −∞ for all other pairs, and start by computing g1. We provide here only a
partial description of the whole calculation, which includes the full detection process of a possible cheat. When calculating
the benefit from cheating of words of length at most 1, the interesting pairs are 〈q1,q2〉 and 〈q2,q1〉. We calculate

g1(q1,q2,a) = 0 + 2 − 8 = −6 g1(q2,q1,a) = −∞
g1(q1,q2,b) = −∞ g1(q2,q1,b) = 0 + 4 − 6 = −2

g1(q1,q2, c) = −∞ g1(q2,q1, c) = 0 + 8 − 6 = 2.

The left column implies that h1(q1,q2) = −6, and the best pattern to reach q2 instead of q1 by a word of length 1 is
achieved by reporting a. Similarly, the right column implies that h1(q2,q1) = 2, and the best pattern to reach q1 instead of q2
by a word of length 1 is by reporting c. In addition, we get that h1(q2,q0) = h1(q1,q0) = −∞ and h1(q1,q1) = h1(q2,q2) = 0.

Given h1, we verify that A is resilient against cheating of words of length 1. Indeed, 2 = h1(q2,q1) � τ (q1) − τ (q2) =
10 − 5 = 5, and −6 = h1(q1,q2) � τ (q2) − τ (q1) = 5 − 10 = −5.

We turn to consider words of length at most 2. We demonstrate the analysis for the states q1 and q2. We calculate

g2(q1,q2,a) = max
{−6,h1(q1,q2) + 4 − 6

} = max{−6,−8} = −6

g2(q1,q2,b) = max
{−∞,h1(q1,q2) + 2 − 7

} = −11

g2(q1,q2, c) = max
{−∞,h1(q1,q2) + 1 − 10,h1(q2,q2) + 2 − 10

} = max{−∞,−15,−8} = −8

g2(q2,q1,a) = max
{−∞,h1(q2,q1) + 6 − 4,h1(q2,q2) + 6 − 6

} = max{−∞,4,0} = 4

g2(q2,q1,b) = max
{−2,h1(q2,q1) + 7 − 2,h1(q2,q2) + 7 − 6

} = max{−2,7,1} = 7

g1(q2,q1, c) = max{2,−∞} = −2.

The above calculations follow Eq. (1). For example, when calculating g2(q2,q1,b), we consider g1(q2,q1,b) = −2, as well
as the two possible ways for reaching q2 in A and q1 in Cheat(A, θ) by words ending with b. The last move in A must be
the self-loop �(q2,b,q2) of cost 7, while the last move in Cheat(A, θ), might be either the self-loop �(q1,b,q1) of cost 2,
or the transition �(q2,b,q1) of cost 6. The first possibility implies a higher value h1(q2,q1) + 7 − 2 = 2 + 7 − 2 = 7.

We conclude that h2(q1,q2) = −6 and h2(q2,q1) = 7. Also, h2(q1,q1) = 2 and h2(q2,q2) = 0 are calculated in a sim-
ilar way (we omit the details). Next we found out that A is not θ -resilient since 7 > τ(q1) − τ (q2) = 5. We can also
reconstruct the cheating pattern to be the word cb. Indeed, cost(A, cb) = 8 + 7 + 5 = 20, while best_cost(A, θ, cb) =
cost(Cheat(A, θ), cb) = 6 + 2 + 10 = 18. Another cheating pattern is cc, which causes the positive value of h2(q1,q1).

Correctness proof. We prove the correctness of the algorithm. Assume first that the algorithm returns that A �� A′ . We
distinguish between two cases. If the algorithm declares that A �� A′ in Step 1, then the word w that witnesses hi(q,q′)
satisfies cost(A′, w) < cost(A, w). If the algorithm declares that A �� A′ in Step 2, let n2 < i � 2n2 and q,q′ ∈ Q i+1 be
such that hi(q,q′) < hi+1(q,q′), and let w be the word of length i + 1 that witnesses hi+1(q,q′). Let r = q0, . . . ,qi+1 be the
single run of A on w , and let r′ = q′

0, . . . ,q′
i+1 be a run of A′ on w such that cost(A′, w) = cost(A′, r′). Thus, r′ is the run

of A′ along which cost(A′, w) is obtained. Note that q = qi+1 and q′ = q′
i+1. Since i + 1 > n2, there must be two indices

0 � j1 < j2 � i + 1 such that q j1 = q j2 and q′
j1

= q′
j2

. Let γ = cost(A, r, j1 + 1, j2) and γ ′ = cost(A′, r′, j1 + 1, j2).
Consider the word w ′ = w1 · · · w j1 · w j2+1 · · · wi+1. Thus, w ′ is obtained from w by removing the sub-word

w j1+1 · · · w j2 along which A and A′ cycle. The single run of A on w ′ is v = q0, . . . ,q j1 ,q j2+1, . . . ,qi+1. Also, v ′ =
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q′
0, . . . ,q′

j1
,q′

j2+1, . . . ,q′
i+1 is a legal run of A′ on w ′ . Note that cost(A, v) = cost(A, r)−γ and cost(A′, v ′) = cost(A′, r′)−γ ′ .

Since hi(q,q′) < hi+1(q,q′), both r and v end in q j1 , both r′ and v ′ end in q′
j1

, and w ′ is of length at most i (and may there-
fore serve as a witness to hi(q,q′)), it must be that cost(A, v) − cost(A′, v ′) < cost(A, r) − cost(A′, r′). Hence, γ − γ ′ > 0.

For j � 1, let w j = w1 · · · w j1 · (w j1+1 · · · w j2 )
j . Thus, w j is obtained from w by pumping the sub-word w j1+1 · · · w j2

for j times. Let α = cost(A, r,1, j1) and let α′ be the cost of the cheapest run of A′ that reads w1 · · · w j1 and leads from
q0 to q′

j1
. Recall that γ − γ ′ > 0, thus γ > γ ′ . Hence, since α, α′ , τ (q j1 ), and τ (q′

j1
) are all finite, there must be j � 0 for

which α + j · γ + τ (q j1 ) > α′ + j · γ ′ + τ (q′
j1
). Since cost(A, w j) = α + j · γ + τ (q j1 ) and cost(A′, w j) � α + j · γ + τ (q j1 ),

it follows that there is j � 0 for which cost(A, w j) > cost(A′, w j), thus A �� A′ , and we are done.
Assume now that A �� A′ . Let w = w1 · · · wl be the shortest word for which cost(A, w) > cost(A′, w). Let r = q0, . . . ,ql

be the single run of A on w , and let r′ = q′
0, . . . ,q′

l be a run of A′ on w such that cost(A′, w) = cost(A′, r′). Thus, r′ is the
run along which cost(A′, w) is achieved.

We distinguish between two cases. First, if l � n2, then, by the definition of the functions hi , we have hl(ql,q′
l) >

τ(q′
l) − τ (ql), thus the algorithm detects that A �� A′ in Step 1.
Second, if l > n2, then there must be two indices 0 � j1 < j2 � n2 such that q j1 = q j2 and q′

j1
= q′

j2
. Let γ =

cost(A, r, j1 + 1, j2) and γ ′ = cost(A′, r′, j1 + 1, j2). Since w is the shortest word for which cost(A, w) > cost(A′, w), it
must be that γ > γ ′ . Indeed, otherwise, the word w ′ = w1 · · · w j1 · w j2+1 · · · wl , which is shorter than w , also satisfies
cost(A, w ′) > cost(A′, w ′).

Let y ∈ Σ∗ be a word of length at most n2 that witnesses hn2 (q j1 ,q′
j1
). Thus, |y| = t , for t � n2, and there are

runs s = s0, . . . , st and s′ = s′
0, . . . , s′

t of A and A′ , respectively, on y, such that st = q j1 , s′
t = q′

j1
, and cost(A, s,1, t) −

cost(A′, s′,1, t) = hn2 (q j1 ,q′
j1
).

Let j = j2 − j1. Consider the word w ′ = y · w j1+1 · · · w j2 . The word w ′ is of length t + j. The single run of A on w ′ is v =
s0, s1, . . . , st ,q j1+1, . . . ,q j2 . Also, v ′ = s′

0, s′
1, . . . , s′

t,q′
j1+1, . . . ,q′

j2
is a legal run of A′ on w ′ . Note that cost(A, v,1, t + j) =

cost(A, s,1, t) + γ and cost(A′, v ′,1, t + j) = cost(A′, s′,1, t) + γ ′ . Also, since w ′ may serve as a witness to ht+ j(q j1 ,q′
j2
),

it must be that ht+ j(q j1 ,q′
j2
) � cost(A, v,1, t + j) − cost(A′, v ′,1, t + j). Since y witnesses ht(q j1 ,q′

j1
) and γ − γ ′ > 0, it

follows that ht+ j(q j1 ,q′
j1
) > ht(q j1 ,q′

j1
). Since ht(q j1 ,q′

j1
) = hn2 (q j1 ,q′

j1
), we conclude that ht+ j(q j1 ,q′

j1
) > hn2 (q j1 ,q′

j1
).

We claim that n2 < t + j � 2n2. Since t, j � n2, then clearly t + j � 2n2. To see that n2 < t + j, assume by way of
contradiction that t + j � n2. Then, the word w ′ is of length at most n2, and it can serve as witness to hn2 (q j1 ,q′

j1
). Since

ht+ j(q j1 ,q′
j1
) > hn2 (q j1 ,q′

j1
), this contradicts the fact that y witnesses hn2 (q j1 ,q′

j1
). Now, since ht+ j(q j1 ,q′

j1
) > hn2 (q j1 ,q′

j1
),

we conclude that there is an iteration n2 � i � 2n2 such that hi(q j1 ,q′
j1
) < hi+1(q j1 ,q′

j1
), and the algorithm declares that

A �� A′ is Step 2.
The function h0 can be calculated in polynomial time, and so is the function hi+1, given hi . Hence, since we need only a

polynomial number of iterations, we can conclude with the following.

Theorem 3.2. Consider a DWFA A and a penalty function θ . The problem of deciding whether A is θ -resilient can be solved in
polynomial time.

4. Achieving resilience with minimum resources

Clearly, the higher the expected fee is, the easier it is for the system to prevent cheating. In practice, penalties may be
limited by an external authority, and increasing the probability of detecting cheats requires resources. In this section we
study the problem of minimizing the resources required in order to guarantee resilience.

Given a WFA A, and a penalty function η, our goal is to find a detection-probability function p, such that A is (η, p)-
resilient to cheating and the budget B = ∑

σ ,σ ′∈Σ η(σ ,σ ′) · p(σ ,σ ′) is minimal. The rationale behind our goal is that
the system can control the probability of catching cheats. In practice, detection probability can be increased by investing
in “guards”, each responsible for a specific possible cheat. The budget we have is the total payment for the guards. The
payment to the guard responsible for detecting σ being reported as σ ′ is independent of the actual number of times σ is
being reported as σ ′ . On the other hand, the payment is proportional to the penalty η(σ ,σ ′) charged whenever the guard
detects the cheat. Indeed, in practice, detecting a cheat with a high penalty tends to require high resources: knowing that
his success leads to a high revenue, a guard would require a high salary. We say that A can achieve resilience with budget B
if there are η and p such that the budget of η and p is B , and A is (η, p)-resilient to cheating.

As explained in Section 2.2, we can consider an equivalent non-probabilistic setting in which all cheats are always
detected and are charged according to the penalty function θ = η ◦ p. In the rest of this section we therefore consider the
problem of deciding, given a WFA A and a budget B ∈ R

�0, whether A can achieve resilience with budget B , as well as the
optimization problem of finding the minimal budget with which A can achieve resilience. A solution for the above problems
induces the expected-fee function θ . Having θ in hand, we use the given penalty function η to fix p(σ ,σ ′) = θ(σ ,σ ′)

η(σ ,σ ′) . In
order to guarantee that our solution is feasible, that is, the probability function is over the range [0,1], our algorithm only
considers solutions in which for all σ ,σ ′ ∈ Σ we have η(σ ,σ ′) � θ(σ ,σ ′).
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4.1. Minimum budget resilience – hardness proof for WFA

We first show that, as in the resilience testing problem, the nondeterministic setting is much more difficult.

Theorem 4.1. Consider a WFA A. Given a budget B, the problem of deciding whether there is a penalty function θ with budget B such
that A is θ -resilient to cheating is PSPACE-hard.

Proof. As in the proof of Theorem 3.1, we do a reduction from the universality problem for NFAs. Given an NFA U , we
construct a WFA AU such that there is a penalty function θ with budget 0 with which A U is θ -resilient to cheating iff U
is universal.

The construction is similar to the one described in the proof of Theorem 3.1, except that now the transition from q0 to
qacc is labeled by both all the letters in Σ \ {a}, with cost 0, and the letter a, with cost 1. It is easy to see that the cost
in AU of words of the form a · w is 0 for w ∈ L(A) and is 1 for w /∈ L(A). Also, for σ �= a, the cost of words of the form
σ · w is 0, regardless of the membership of w in L(A). Accordingly, if U is universal, then A U accepts all words in Σ∗ with
cost 0, and is therefore 0-resilient, in which a budget 0 suffices to ensure resilience. Also, if U is not universal, then there
is w /∈ L(U ) such that cost(AU ,a · w) = 1, while faked_cost(A U ,a · w,b · w) = θ(a,b), for any b ∈ Σ \ {a}. Hence, in order to
ensure θ -resilience, a penalty function θ must satisfy θ(a,b) � 1, thus the budget required to θ is at least |Σ | − 1, and we
are done. �
4.2. Minimum budget resilience – a polynomial algorithm for DWFA

We turn to consider deterministic WFAs. Note that if we define an order � between penalty functions, where θ1 � θ2 iff
θ1(σ ,σ ′) � θ2(σ ,σ ′) for all σ ,σ ′ ∈ Σ , then the penalty functions that ensure resilience are not linearly ordered. This last
observation hints that the problem of finding a minimal sufficient penalty with respect to which A is resilient cannot be
solved in a straightforward way, as it cannot be based on a search in a linearly ordered domain. Still, as we show below,
when A is a deterministic WFA, it is possible to describe the resilience requirements as a set of linear inequality constraints.
Since the optimization objective can be also described as a linear function, it is possible to determine the minimal sufficient
penalty function using linear programming (LP). LP is a mathematical tool suitable for determining an optimal solution
for a linear objective function defined over a set of variables, while obeying a set of requirements represented as linear
equations [4]. Recall that cheating may not be prevented even when there is no limit on the resources of the WFAs. That
is, there are WFAs A such that for every penalty function θ , we have that A is not θ -resilient as some (long) words can
benefit from cheating. In this case, the feasible set of the LP solution is empty.

We describe the problem as a linear programming optimization problem with a polynomial number of variables and
constraints. Given a WFA A and a penalty function η, the algorithm returns a new penalty function θ such that the following
hold:

1.
∑

σ ,σ ′∈Σ θ(σ ,σ ′) is minimal.

2. For all σ ,σ ′ ∈ Σ , we have 0 � θ(σ ,σ ′)
η(σ ,σ ′) � 1.

3. A is θ -resilient.

Note that the second property assures that θ = η ◦ p, for some probability function p satisfying p(σ ,σ ′) ∈ [0,1].
The first property defines the objective function of the LP. The LP constraints assure the second and third properties.

Specifically, for the third property, the LP constraints assure that the algorithm described in Section 3.2, for testing whether
A is θ -resilient, would return A � Cheat(A, θ). Accordingly, the variables we use are the following:

• For all σ ,σ ′ ∈ Σ , the variable θσ ,σ ′ maintains the penalty function θ(σ ,σ ′).
• For 0 � i � 2n2 and q,q′ ∈ Q , the variable hi,q,q′ maintains hi(q,q′).
• For 0 � i � 2n2, q,q′ ∈ Q , and σ ∈ Σ , the variable gi,q,q′,σ maintains gi(q,q′, σ ).

The objective function is min
∑

σ ,σ ′ θσ ,σ ′ . Since the penalty function is non-negative, we have |Σ |2 constraints θσ ,σ ′ � 0
for all σ ,σ ′ ∈ Σ . In addition, θσ ,σ = 0 for all σ ∈ Σ . Also, in order to guarantee that the detection-probability function is
feasible, we have, for all σ ,σ ′ ∈ Σ , the constraint θσ ,σ ′ � ησ,σ ′ .

The additional constraints follow the structure of the algorithm presented in Section 3.2. For k = 1, . . . ,n2, the k-th set
of constraints assures that no word of length at most k should benefit from cheating. For k = n2 + 1, . . . ,2n2, the k-th set
of constraints assures that no cycle that can lead to unlimited gain exists. Each such set consists of a polynomial number of
constraints and introduces a polynomial number of variables. Specifically, variables of type hi,q,q′ bound the gain of words
of length at most i, and variables of type gi,q,q′,σ bound this gain for words of length at most i ending with σ . While the
variables hi,q,q′ , gi,q,q′,σ are defined for every 0 � i � 2n2, q,q′ ∈ Q , and σ ∈ Σ , in practice, many of these variables are not
constrained, as it might be that no word of length at most i can reach state q in A and q′ in A′ .
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Fig. 5. The DWFA A.

We first describe the constraints considering words of length 1, and then the constraints for general k. Note that the first
set of constraints can be viewed as a special case of the general set, however, since we know that q0 is the only possible
state preceding states reachable by a single letter, the presentation of this set is simpler. We also note that in order to clarify
the intuition behind each constraint, the constraints are not necessarily presented in the canonical form of an LP (that is,
with all variables in the left-hand side and all constants in the right-hand side).

In order to assure that words of length 1 will not cheat, we have a variable h1,q,q′ for all q,q′ ∈ Q , and a variable
g1,q,q′,σ for all q,q′ ∈ Q , σ ∈ Σ . To reflect Eq. (1) in the algorithm described in Section 3.2, we have, for all σ ′ ∈ Σ such
that �(q0, σ ,q) and �(q0, σ

′,q′), the constraint g1,q,q′,σ � c(q0, σ ,q)−c(q0, σ
′,q′)−θ(σ ,σ ′). To reflect Eq. (2), we have, for

all q,q′ ∈ Q and σ ∈ Σ for which g1,q,q′,σ is bounded, the constraint h1,q,q′ � g1,q,q′,σ . Since h0(q0,q0) = 0 and the sequence
of functions h0,h1, . . . is non-decreasing, we also have, for the state q0, the constraint h1(q0,q0) � 0. Finally, to reflect the
comparison done in Step 1 of the resilience-testing algorithm, for all q,q′ ∈ Q we have the constraint h1,q,q′ � τ (q′) − τ (q).

For example, the first set of constraints defined for the DWFA A in Fig. 5 is as follows.

g1,q1,q2,a � 2 − 3 − θa,b h1(q1,q2) � g1,q1,q2,a

g1,q1,q2,a � 2 − 8 − θa,c h1(q1,q2) � 5 − 10

g1,q2,q1,b � 3 − 2 − θb,a h1(q2,q1) � g1,q2,q1,b

g1,q2,q1,c � 8 − 2 − θc,a h1(q2,q1) � g1,q2,q1,c

g1,q2,q2,b � 3 − 8 − θb,c h1(q2,q1) � 10 − 5

g1,q2,q2,c � 8 − 3 − θc,b h1(q2,q2) � g1,q2,q2,c

h1(q0,q0) � 0 h1(q2,q2) � g1,q2,q2,b

h1(q2,q2) � 5 − 5.

In order to assure that words of length i do not cheat, we have a variable hi,q,q′ for all q,q′ ∈ Q , and a variable gi,q,q′,σ
for all q,q′ ∈ Q and σ ∈ Σ . To reflect Eq. (1), we have, for all p, p′ ∈ Q and σ ′ ∈ Σ such that �(p, σ ,q) and �(p′, σ ′,q′),
the constraint

gi,q,q′,σ � hi−1,p,p′ + c(p,σ ,q) − c
(

p′,σ ′,q′) − θ
(
σ ,σ ′).

To reflect Eq. (2), we have, for all q,q′ ∈ Q and σ ∈ Σ for which gi,q,q′,σ is bounded, the constraint hi,q,q′ � gi,q,q′,σ . Also, for
all q,q′ ∈ Q we have the constraints hi,q,q′ � hi−1,q,q′ . Finally, for all q,q′ ∈ Q we have the constraint hi,q,q′ � τ (q′) − τ (q).
This last type of constraints, considering the final costs, corresponds to the comparison done in Step 1 of the resilience-
testing algorithm.

For example, for the DWFA presented in Fig. 5, the following are the constraints relevant to words of length 2 that
without cheating must get to q2 but consider getting to q1. Since words of length 1 can only reach q1 or q2 and
�(q1, c,q2) = �(q2, c,q2) = ∅, there are no constraints involving the variable g2,q2,q1,c .

g2,q2,q1,a � h1,q2,q2 + 6 − 2 − θ(a, c) g2,q2,q1,b � h1,q2,q1 + 7 − 4 − θ(b,a)

g2,q2,q1,a � h1,q2,q1 + 6 − 4 − θ(a,a) g2,q2,q1,b � h1,q2,q1 + 7 − 2 − θ(b,b)

g2,q2,q1,a � h1,q2,q1 + 6 − 2 − θ(a,b) g2,q2,q1,b � h1,q2,q1 + 7 − 1 − θ(b, c)

g2,q2,q1,a � h1,q2,q1 + 6 − 1 − θ(a, c) g2,q2,q1,b � h1,q2,q2 + 7 − 2 − θ(b, c)

h2,q2,q1 � g2,q2,q1,a h2,q2,q1 � h1,q2,q1

h2,q2,q1 � g2,q2,q1,b h2,q2,q1 � 10 − 5.

For k = n2 + 1 . . . 2k2, the set of variables and the set of constraints are very similar to these sets for k � n2. The only
difference is the last type of constraints for every q,q′ ∈ Q . Instead of hi,q,q′ � τ (q′) − τ (q), we have hi,q,q′ � hi−1,q,q′ . These
constraints corresponds to the detection of gain increasing cycles, done in Step 2 of the resilience testing algorithm.

The correctness of the following claim follows from the construction of the constraints.
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Claim 4.2. The set of penalty functions in all feasible solutions to the LP is identical to the set of penalty functions for which the resilience
algorithm provides a positive answer.

In particular, the feasible solution for which
∑

σ ,σ ′ θσ ,σ ′ is minimized, corresponds to a penalty function with minimal
total budget. The total number of constraints and variables in our LP is polynomial in |Q | and |Σ |. Therefore, it is possible
to find an optimal solution for it [4,11] in polynomial time. We can thus conclude with the following.

Theorem 4.3. The minimum cost resilience problem for a DWFA can be solved in polynomial time by finding an optimal solution to the
LP – which corresponds to a penalty function with minimal total budget.

5. Conclusions and open problems

We suggested an automata-theoretic framework for the modeling of the on-going interaction of a system with rational
and selfish environments. Cheating the system amounts to reporting a stream of inputs that is different from the one
corresponding to the real behavior of the environment, and the system may cope with cheating by charging penalties to
cheats it detects.

Our results provides answers to the basic problems in the setting the objective of the environment is quantitative. The
rich quantitative setting also makes the problem difficult in the nondeterministic settings. We left open the possibly easier
setting, where the objectives and penalties are Boolean. In this setting, the system is a probabilistic automaton: the transition
function maps a state and letter to a distribution on the successor states, and thus the language of the automaton maps
words in Σ∗ to the probability of acceptance. The environment cheats in order to increase the probability of acceptance,
but detection leads to rejection. We believe that this setting corresponds to many natural scenarios, and its solution may
be easier than the quantitative one. Finally, in both the Boolean and quantitative settings, it will be interesting to consider
infinite on-going behaviors, generated by non-terminating systems. Here, the outcome for the system and the environment
depends on the behavior in the limit, and the corresponding model is of weighted automata on infinite words [3].
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