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SEQUENTIAL ENTRY IN MANY-TO-ONE
MATCHING MARKETS

ELETTE BOYLE AND FEDERICO ECHENIQUE

Abstract. We study sequential bargaining in many-to-one match-
ing markets. We show that there is an advantage to entering late
in the market, and that the last agent to enter the market will
receive his or her best partner in a stable matching, extending the
results of Blum and Rothblum (2002) and Cechlárová (2002) for
the marriage model. We also discuss the relation between sequen-
tial bargaining and a possible alternative formulation based on the
NTU Shapley value.

1. Introduction

We study sequential bargaining in many-to-one matching markets.
Consider a two-sided matching market, such as a labor market. Sup-
pose that agents sequentially enter the market, and that each time an
agent arrives, the market adjusts to produce a new stable matching.
Following Blum and Rothblum (2002) and Cechlárová (2002), we study
a simplified model of sequential entry, in which participants enter the
market one at a time, in some arbitrary given order. When an agent
enters the market, there is an adjustment from the existing provisional
matching to a new one. The entrant proposes to match with her most
preferred partner. This can leave a previously paired agent unmatched,
in which case this agent would propose to her most preferred partner,
and so on.

We show that sequential entry results in an advantage to entering
late into the market. Other factors remaining equal, it is always better
to enter later than earlier. Further, the last agent to enter receives
his/her best possible outcome of all stable outcomes for the market.
Our results generalize similar results obtained for the one-to-one (mar-
riage) market by Blum and Rothblum (2002) and Cechlárová (2002).
Biró, Cechlárová, and Fleiner (2007) present a different generalization,
to a model which includes the roommate problem.

We thank Peter Biró and Utku Ünver for their advice on the related literature.
We also thank an anonymous referee for comments.
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We also show that sequential entry violates a basic monotonicity
axiom: one agent may rise in others’ preferences but receive, on av-
erage, worse outcomes. Monotonicity is behind standard solutions for
random-order bargaining in other environments (Young, 1985). So se-
quential entry in matching seems rather special.

We work with a separable version of the many-to-one model, the
“college admissions” model. We reduce the college admissions model
to a one-to-one model by treating each position in a college as an
individual agent, each of which can match to at most one student. This
isomorphism between models is nontrivial in our case. The ordering of
identical college positions yields an additional degree of freedom in the
market that is lost when entry is sequential. We show, however, that
this difficulty can be overcome.

The sequential entry model can be thought of as a random-order bar-
gaining solution, which suggests comparisons with the Shapley value.
In Section 4 we discuss the possible definitions of a Shapley value for
matching markets, and show that it is generally not well defined. Se-
quential entry is always well defined, but developing a theory of random
sequential entry seems difficult.

We should mention that Ma (1996) and Klaus and Klijn (2006) also
study sequential entry. They present examples to show that not all
stable matchings can be obtained under sequential entry, and to discuss
the validity of certain axioms. Other related papers are Cantala (2004)
and Kojima and Ünver (2007).

In Section 2 we present the model. Section 3 contains our results on
sequential entry for the many-to-one model. We discuss the Shapley
value in Section 4, and coalitional monotonicity in Section 5.

2. The Model

We present the standard marriage and college-admissions model. See
Roth and Sotomayor (1990) for a detailed exposition of matching mar-
kets. The marriage model plays a central role in this study since our
results utilize a reduction of the college-admissions model to the mar-
riage model, and because our results for the Shapley value hold for the
marriage model.

2.1. Marriage model. We first describe the one-to-one marriage model.
Let M and W be finite, disjoint sets. We will refer to the elements of
M as men and the elements of W as women. A generic element of
M ∪W is an agent.

A preference relation is a linear, transitive, and antisymmetric bi-
nary relation. A preference relation for a man m ∈ M , denoted >m,
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is understood to be over the set W ∪ {m}. Similarly, >w denotes a
preference relation over M ∪ {w}. A preference profile is a list P of
preference relations for men and women, i.e.

P =
(
(>m)m∈M , (>w)w∈W

)
.

We will assume that no man or woman is indifferent over two different
partners; i.e., if w 6= w′, then either w >m w′ or w′ >m w. Preferences
with this property are called strict. Denote by ≥m the weak relation
associated to >m. That is, w′ ≥m w if either w′ = w or w′ >m w. The
definition of ≥w is analogous.

The triple (M,W,P ) describes an instance of the marriage model.
We shall often consider instances obtained by deleting some agents from
(M,W,P ): we denote by (M,W,P ;M ′,W ′) the instance (M ′,W ′, P ′),
with M ′ ⊆M , W ′ ⊆ W , and where P ′ is obtained from P by restricting
agents’ preferences to the relevant subsets of potential partners.

A matching is a function µ : M ∪W → M ∪W such that, for all
m ∈ M and w ∈ W , µ(m) ∈ W ∪ {m} and µ(w) ∈ M ∪ {w}, and
m = µ (w) if and only if w = µ (m). If w = µ(m) we say that w and
m are matched in µ. If a = µ(a), for a ∈ M ∪W , we say that a is
single. Say that an agent is acceptable to a if a prefers to match with
the agent over being single.

A matching µ is defined to be individually rational if, for any m and
w, µ(m)≥mm and µ(w)≥w w; i.e. all matched agents have acceptable
matches. Say that a pair (w,m) blocks µ if w 6= µ(m), w >m µ(m),
and m >w µ(w). A matching is stable if it is individually rational and
there is no pair that blocks it. Denote by S(M,W,P ) the set of all
stable matchings in the market (M,W,P ).

2.2. College admissions. Let C and S be finite, disjoint sets of
agents. We call the elements of C colleges and the elements of S
students. Suppose that each college C ∈ C has a quota qC ≥ 0 of
available positions. College C can then accept at most qC students,
and the remaining positions will remain unfilled. Thus, the potential
student bodies for college C are sets A∪B, where |A ∪B| = qC , A ⊆ S
and B has qC − |A| copies of the element C of C (corresponding to the
unfilled positions). Formally speaking, A ∪ B is an unordered list; see
Roth and Sotomayor (1990). Let DC be the set of all potential student
bodies for C and endow C with a preference relation >C over DC . We
assume that >C satisfies the property that, for any D ∈ DC , if a ∈ D
and a′ /∈ D, then

((D ∪ {a′}) \ {a}) >C D if and only if {a′} >C {a} .
This property is called responsiveness.
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Each student s ∈ S is similarly endowed with a preference relation≥s
over C∪{s}. Let P be the list of all colleges’ and students’ preferences.
Then the data on a college-admissions market is collected in (C, S, P ).

A many-to-one matching is a function µ on C ∪ S such that, for all
C ∈ C and s ∈ S, µ(C) ∈ DC , µ(s) ∈ C ∪ {s}, and s ∈ µ(C) if and
only if µ(s) = C.

A matching µ is individually rational if µ(s) = C implies that C >s s
and {s} >C {C}. A matching is stable if it is individually rational and
there is no pair (C, s) such that C >s µ(s) and {s} >C {a} for some
a ∈ µ(C).

We use a (well known) reduction of college admissions to marriage
markets. The reduction works by considering each available position in
a college as a separate agent. In order to maintain strict preferences,
the first position of a college is set to be preferred by all students over
the second position of the college, over the third, and so on (Roth and
Sotomayor, 1990).

Formally, given an instance of the college-admission model, (C, S, P ),
we construct an instance of the marriage model, (M,W,P ) by setting
M = S; taking W to be the set containing qC copies, c1, . . . cqC of
college C for each C ∈ C; and defining preferences of men and women
such that each cj has the same preferences as C over singleton students
(now men), and each s ∈M has preferences >s over copies of different
colleges, satisfying for each C, for all s ∈ M , ci >s cj if and only if
i < j. We use the notation c ∈ C to denote one of the copies of C ∈ C.

2.3. Sequential entry. We present a model of sequential entry due
to Blum and Rothblum (2002) (following ideas of Roth and Vande
Vate (1990) and Blum, Roth, and Rothblum (1997)). The setup is a
variant on the classic Gale-Shapley stable matching algorithm. We first
present the model within the marriage model, and then its extension
to the college-admissions model.

The Gale-Shapley algorithm (Gale and Shapley, 1962) takes as input
an instance of the marriage model and gives a matching as output. It
starts with all men being “active” and all women being provisionally
single, and it iterates the following subroutine: Let each active man
propose to match with his preferred woman, of those women he has
not already proposed to. Each woman selects her preferred man be-
tween her provisional match and those who proposed to her during the
round. At the conclusion of this round, take each woman to be provi-
sionally matched to the man she selects. A man becomes active after
a round if he was rejected by a woman during the round and there
are still acceptable women to whom he has not yet proposed. Exit the
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subroutine. The algorithm terminates when there are no more active
men.

Gale and Shapley show that the outcome µ of the algorithm is a
stable matching. In fact it is the men-optimal stable matching, in the
sense that all men prefer their match in µ over their match in any
other stable matching, and all women have the opposite preference.
Similarly, the version of the algorithm with women proposing to men
produces the women-optimal stable matching.

We study a straightforward modification of the Gale-Shapley algo-
rithm: Take as input to the subroutine an instance (M,W,P ), and a
matching µ in (M,W,P ;M \{m} ,W ) with m ∈M . The output will be
a matching in (M,W,P ). Start with m being the only “active” agent
and all women provisionally matched to their matches in µ. Repeat
the subroutine in the Gale-Shapley algorithm (with only male agents
proposing) until no men are active. Denote the resulting matching by
h(M,W,P ;m,µ). Analogously, h(M,W,P ;w, µ) would be the match-
ing that results from the above algorithm with women proposing, and
agent w starting as active.

An ordering of the agents is an ordered list of the elements of M∪W .
We denote by R the set of all orderings, and by ρ a generic ordering.
Let ρk denote the ordered list of the first k elements of ρ, ρkM the set of
men in ρk and ρkW the set of women in ρk. Let ρk denote the kth agent
in ρ, equivalently, the last element of ρk.

Let ρ ∈ R and consider the recursive procedure where we let µk+1 =
h(ρkM , ρ

k
W , P ; ρk, µ

k), starting from the matching µ1(ρ1) = ρ1. Let f(ρ)
be the matching that results after the last agent has been added.

For the college-admissions market (C, S, P ), we let R be the set of
all orderings of students and positions in colleges. So the orderings
in R are the orderings of M ∪W in the marriage market associated
to (C, S, P ). We define f(ρ) as the matching that results from the
procedure we have described, but applied to the associated marriage
model.

3. Main Results

We show that there is a strong late-mover advantage in sequential
bargaining over many-to-one matching outcomes. Indeed, in the ex-
treme case, the final agent to enter the market will receive his or her
best partner in a stable matching. The result in item 1 of Theorem 1
was shown for the marriage model by Blum and Rothblum (2002) and
Cechlárová (2002), and generalized to a single-party roommate model
by Biró, Cechlárová, and Fleiner (2007). A weaker version of the
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statement in item 2 is shown Blum and Rothblum (2002) and Biró,
Cechlárová, and Fleiner (2007) for the marriage model.

Theorem 1. Let (C, S, P ) be an instance of the college admissions
model. Let ρ ∈ R be an ordering of the students and college positions.
Then

(1) f(ρ) is a stable matching and the last agent a in ρ receives
his/her preferred partner in any stable matching; if a is the
position of a college C, then C receives his/her preferred student
body in any stable matching.

(2) Let ρ′ be an ordering in which agent b occurs later than in ρ,
and all agents that follow b’s position in ρ′ coincide in both
orderings. If b = s ∈ S is a student, then f(ρ′)(s) ≥s f(ρ)(s);
if b is a position of a college C ∈ C, then f(ρ′)(C) ≥C f(ρ)(C).

The proof of Theorem 1 requires some preliminary results. The first
are two lemmas from Blum and Rothblum (2002).1 These hold for the
marriage market. Lemma 4 is a new result, which holds on the college
admissions model.

Lemma 2. Consider an instance of the marriage market. For any
stable matching µ in the market (M,W,P ;M \ {m} ,W ), the resulting
matching h(M,W,P ;m,µ) is stable in (M,W,P ), and is preferred by
all the men to any other stable matching in which the women are at
least as well off as in µ. Similarly for h(M,W,P ;w, µ).

Lemma 3. Consider an instance of the marriage market. Let µ = f(ρ)
and µ′ = f(ρ′), for two orderings ρ and ρ′. If µ′(b) ≥b µ(b) for some
agent b, then this relation is preserved when an additional player is
added onto the end of both orderings. That is, if ρ̂ and ρ̂′ are the
orderings obtained by adding the same agent at the end of ρ and ρ′, we
have f(ρ̂′)(b) ≥b f(ρ̂)(b).

We omit the proofs of lemmas 2 and 3.

Lemma 4. Consider an instance of the college-admissions model (C, S, P )
and fix a matching µ. When a college position enters the market, the
resulting matching is the college-optimal (C-optimal) stable matching
such that no student is worse off than in µ; when a student enters the
market, the resulting matching is the student-optimal (S-optimal) stable
matching such that no college is worse off than in µ.

1Lemma 2 is Theorem A.6, and Lemma 3 is Lemma 2.4 in Blum and Rothblum
(2002).
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Proof. From Lemma 2, the claim holds for students and individual col-
lege positions in the one-to-one market model. The C-optimal match-
ing of a set of stable matchings S (when it exists) is the match-
ing µC such that µC(C) ≥C µ(C) ∀C ∈ C,∀µ ∈ S. By Theorem
5.27 in Roth and Sotomayor (1990), this condition is equivalent to
µC(ci) ≥ci µ(ci) ∀ college positions ci, ∀µ ∈ S. This implies the col-
lege position-optimal matching s.t. no student is worse off is precisely
the C-optimal matching s.t. no student is worse off. Consider now the
second assertion. No college worse off in matching µ1 than in µ2 means
that µ1(C) ≥C µ2(C) ∀C ∈ C. Again from Theorem 5.27 in Roth and
Sotomayor (1990), this occurs if and only if µ1(ci) ≥ci µ2(ci) ∀ college
positions ci, implying the set of stable matchings such that no college
is worse off is precisely the set of stable matchings such that no college
position is worse off. �

Lemma 5. Consider the one-to-one model of the many-to-one market
with students and individual college positions. If two positions ci and cj
of the same college C are switched in an ordering ρ, then the resulting
stable matching is unaffected.

Proof. Suppose ci and cj appear in the mth and nth positions of the
ordering ρ1, respectively; we may assume without loss of generality
that m < n. Let ρ2 be the ordering with ci and cj switched. For every

i ≥ 1, let (C
(i)
1 , S

(i)
1 , P

(i)
1 ) and (C

(i)
2 , S

(i)
2 , P

(i)
2 ) be the ith restriction

submarkets containing the first i players appearing in ρ1 and ρ2, and

maintaining all relevant preferences. Take π : (C ∩C
(i)
2 )→ (C ∩C

(i)
1 )

to be the unique bijection such that ck <s cl ⇔ π(ck) <s π(cl) for
each student s ∈ S (Note that, from the construction of the market
model, ck <s0 cl for some s0 ∈ S and ck, cl ∈ C iff ck <s cl ∀s ∈ S).

Extend π to the map φ : C
(i)
2 → C

(i)
1 by φ(c) = c ∀c /∈ C. By the

construction of the market model, a student prefers all positions of a
college over all positions of a less preferred college; thus, the relation
ck <s cl ⇔ φ(ck) <s φ(cl) holds for all students s ∈ S and for all
positions c.

Let µ
(i)
1 be a matching in (C

(i)
1 , S

(i)
1 , P

(i)
1 ), and define the matching µ

(i)
2

in (C
(i)
2 , S

(i)
2 , P

(i)
2 ) by µ

(i)
2 (c) = µ

(i)
1 (φ(c)) ∀c ∈ C

(i)
1 and µ

(i)
2 (s) = s ∀s

s.t. µ
(i)
1 (s) = s. Show that µ

(i)
1 is a stable matching iff µ

(i)
2 is a stable

matching. Suppose, to the contrary, there exists a blocking pair (ĉ, ŝ)

in µ
(i)
2 . Then, ŝ >ĉ µ

(i)
2 (ĉ) and ĉ >ŝ µ

(i)
2 (ŝ). By properties of φ, we have

that φ(ĉ) >ŝ φ(µ
(i)
2 (ŝ)). From the construction of µ

(i)
2 , µ

(i)
2 (µ

(i)
2 (ŝ)) =

µ
(i)
1 (φ(µ

(i)
2 (ŝ))); since we also have trivially that µ

(i)
2 (µ

(i)
2 (ŝ)) = ŝ =
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µ
(i)
1 (µ

(i)
1 (ŝ)) and as µ

(i)
1 is an injective mapping, this implies φ(µ

(i)
2 (ŝ)) =

µ
(i)
1 (ŝ). So we have φ(ĉ) >ŝ µ

(i)
1 (ŝ). Now, ŝ >ĉ µ

(i)
2 (ĉ) = µ

(i)
1 (φ(ĉ)). If

ĉ /∈ C, then φ(c) = c, implying ŝ >φ(ĉ) µ
(i)
1 (φ(ĉ)). If ĉ ∈ C, then

φ(ĉ) ∈ C as well. Since all positions of college C share the same

preferences, we again have that ŝ >φ(ĉ) µ
(i)
1 (φ(ĉ)). Therefore, (ŝ, φ(ĉ))

form a blocking pair in µ
(i)
1 , contradicting the stability of µ

(i)
1 . An

identical argument, utilizing φ−1 in the place of φ, can be used to show

that µ
(i)
2 stable implies µ

(i)
1 is stable. Thus, one matching is stable iff

the other matching is stable.
This result implies that for each i, the set of stable matchings in

(C
(i)
1 , S

(i)
1 , P

(i)
1 ) is in bijection with those in (C

(i)
2 , S

(i)
2 , P

(i)
2 ), and are

the same up to the labeling of the positions of college C. We wish

to show that when a new agent enters both markets, µ
(i)
1 is the re-

sulting matching in (C
(i)
1 , S

(i)
1 , P

(i)
1 ) iff µ

(i)
2 is the resulting matching in

(C
(i)
2 , S

(i)
2 , P

(i)
2 ).

Suppose a new college position enters both markets. For each stu-

dent s ∈ S, µ
(i+1)
2 (s) ≥s µ(i)

2 (s) ⇔ φ(µ
(i+1)
2 (s)) ≥s φ(µ

(i)
2 (s)) (from

properties of φ) ⇔ µ
(i+1)
1 (s) ≥s µ(i)

1 (s) (since µ
(j)
1 (s) = φ(µ

(j)
2 (s)) from

above). That is, no student is worse off in µ
(i+1)
1 than the previous

matching (µ
(i)
1 ) iff no student is worse off in the analogue matching

µ
(i+1)
2 than in µ

(i)
2 . Now, suppose a new student enters both markets.

µ
(i+1)
2 (c) ≥c µ(i)

2 (c) ⇔ µ
(i+1)
1 (φ(c)) ≥c µ(i)

1 (φ(c)) (by definition of

µ
(i)
2 (s)) ⇔ µ

(i+1)
1 (φ(c)) ≥φ(c) µ

(i)
1 (φ(c)) (since c and φ(c) are positions

of the same college and all positions of a college share the same pref-

erences). As φ is a bijection between C
(i)
1 and C

(i)
2 , this holds for all

c ∈ C
(i)
2 iff µ

(i+1)
1 (c′) ≥c′ µ(i)

1 (c′) for all c′ ∈ C
(i)
1 . That is, no college

position is worse off in µ
(i+1)
1 than in the previous matching iff the same

holds for µ
(i+1)
2 .

We now show that µ2 is S-optimal (resp, C-optimal) of a set of stable

matchings in (C
(i)
2 , S

(i)
2 , P

(i)
2 ) iff µ1 is S-optimal (resp, C-optimal) of the

corresponding set of stable matchings in (C
(i)
1 , S

(i)
1 , P

(i)
1 ). Consider two

matchings µ2 and µ̃2 in (C
(i)
2 , S

(i)
2 , P

(i)
2 ). µ2(s) ≥s µ̃2(s) ⇔ φ(µ2(s)) ≥s

φ(µ̃2(s)) ⇔ µ1(s) ≥s µ̃1(s) in (C
(i)
1 , S

(i)
1 , P

(i)
1 ). Similarly, µ2(c) ≥c

µ̃2(c) ∀c ∈ C
(i)
2 ⇔ µ1(φ(c)) ≥c µ̃1(φ(c)) ∀c ∈ C

(i)
2 ⇔ µ1(c

′) ≥c′
µ̃1(c

′) ∀c′ ∈ C
(i)
1 .

Therefore, by Lemma 4, whenever a student or a college position

enters the market in (C
(i)
1 , S

(i)
1 , P

(i)
1 ) and (C

(i)
2 , S

(i)
2 , P

(i)
2 ), the resultant
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matching in the former is µ
(i+1)
1 if and only if the resulting matching

in the latter is µ
(i+1)
2 . Continuing inductively, we see that the final

matchings resulting from the two orderings ρ1 and ρ2 must be the same
up to permutation of the positions of college C. However, in order for
a matching µ to be stable, it must be that the most preferred student
in µ(C) is paired with the first position in C, the second most preferred
student with the second position in C, and so on. Hence, since both
µ1 and µ2 are stable matchings, it must be that µ1 = µ2. �

Proof of Theorem 1. We first prove item 1 using that the result is true
for the marriage market associated to (C, S, P ).

The result is immediate when a student is the last to enter. Suppose
that the last agent in ρ is a position of a college C. Let µ be the
college-optimal stable matching in (C, S, P ). By Lemma 4, f(ρ) is
stable. If µ(C) >C f(ρ)(C) there must be a position c ∈ C such
that s is c’s partner in µ, s′ is c’s partner in f(ρ), and s >c s

′ (see
Roth and Sotomayor (1990)). Now consider the order ρ′ which only
differs from ρ in that the last position of ρ switches places with c. By
Lemma 5, f(ρ) = f(ρ′), the fact that c does not obtain its best partner
in a stable matching contradicts the statement of Theorem 1 for the
marriage market.

We now prove item 1. For the marriage market, our statement is
more general than the one in Blum and Rothblum (2002), so we present
a separate proof first for the marriage market.

Consider an instance of the marriage market, (M,W,P ). Let n be
the number of agents. Suppose agent b is in the kth position in the
ordering ρ′, so b = ρ′k. By Lemma 2, then, b’s partner in the match-
ing f(ρ′k) is his/her best stable partner in any stable matching in
(M,W,P ; ρ′M , ρ

′
W ). But since the agents coming after b coincide for

both ρ and ρ′, the agents coming before b also coincide. So ρM = ρ′M
and ρW = ρ′W and hence b prefers his/her partner in f(ρ′k) over his/her
partner in f(ρk).

Now proceed by induction, using Lemma 3: For each i ≥ k, f(ρ′i)(b) ≥b
f(ρi)(b) implies that f(ρ′i+1)(b) ≥b f(ρi+1)(b) implies that, as we are
adding the same agent to both orderings.

We now prove the result for the college-admissions model. For a ∈ S,
the result follows from the argument for the marriage market. Consider
then a = c0, a position in college C. By Theorem 1, µ1(c0) ≥c0 µ2(c0).
By Theorem 5.27 in Roth and Sotomayor (1990), it remains to show
that µ1(cj) ≥cj µ2(cj) ∀j 6= 0 such that cj ∈ C. Suppose c0 appears

n-th in the ordering ρ1. For every i ≥ n, let (C(i), S(i), P (i)) be the ith
restriction submarket containing only the first i players appearing in
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ρ1 (and ρ2), and maintaining all relevant preferences. Let µ
(i)
1 and µ

(i)
2

be the stable matchings resulting from the first i players in ρ1 and ρ2

entering the market.
Suppose cj ∈ C appears mth in ρ1, with m ≥ n. From item 1 in

Theorem 1, since cj appears last of the m players in ρ1, cj will receive

the best possible stable student in the matching µ
(m)
1 . ⇒ µ

(m)
1 (cj) ≥cj

µ
(m)
2 (cj). By Lemma 3 this relation is preserved as each of the following

players enters the market. Continuing inductively, we have µ1(cj) ≥cj
µ2(cj). (Note that for m > n, this argument holds also in the opposite
direction, implying that µ1(cj) = µ2(cj)).

Suppose, then, cj ∈ C appears lth in ρ1, with l < n. From Lemma 5,
ρ1 will yield the same stable matching as the ordering ρ̂1 with the
positions of c0 and cj switched. As cj appears later in ρ̂1 than ρ2, we
have by item 2 in Theorem 1, ρ2(cj) ≤cj ρ̂1(cj) = ρ1(cj).

It has been shown that µ1(cj) ≥cj µ2(cj) ∀j such that cj ∈ C. There-
fore, µ1(C) ≥C µ2(C). �

4. The Shapley Value in Matching Markets

The discussion of sequential entry may suggest ideas of sequential
random-order bargaining. It is natural to consider an alternative ap-
proach, using the Shapley value. In this section, we focus on the mar-
riage model, and show that the Shapley value will typically not be well
defined.

The Shapley value is the best-known prediction in random-order
bargaining, and its extension to non-transferable utility (NTU) games
(Shapley, 1969) is in principle applicable to matching problems. While
the Shapley value for transferable-utility (TU) games is the result of
a simple calculation, in NTU games it requires a fixed-point property,
and is not guaranteed to exist for arbitrary NTU games (it can also
have problematic properties, as illustrated in Roth (1980)).

As we show below, in the NTU games that result from a matching
market, the Shapley value will not generally be well defined. Indeed, it
does not seem to exist beyond a set of very symmetric situations. We
view the problems with the Shapley value as one reason to be interested
in the f outcomes discussed in Section 3.

4.1. Preliminaries. A transferable utility (TU) game is a pair (N, v)
composed of a set of players N and a real-valued function v : 2N → R
on the power set of N , satisfying v(∅) = 0. A coalition is a nonempty
subset of N . For a coalition S of players within N , v(S) associates a
value of worth to that particular coalition.
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Definition 6. The Shapley value of a TU game (N, v) is the vector
whose ith component is given by

φi(v) =
∑
S⊆N

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)),

for each player i ∈ N .

A non-transferable utility (NTU) game is a pair (N, V ) composed of
a set N and a function V taking each subset S of N to a subset of Rs

(where s = |S|) satisfying the following conditions:

(i) V (S) = ∅ iff S = ∅
(ii) If x = (x1, . . . , xs) ∈ V (S) and y = (y1, . . . , ys) ∈ Rs with

yi ≤ xi for each i, then y ∈ V (S)
(iii) V (S) is a closed subset of Rs

(iv) V (S) ∩ (x+ R+) is bounded for all x ∈ Rs

The s-dimensional vectors in V (S) represent possible ways of dis-
tributing the worth of the subset S among its s members. An example
of an NTU game is a two-sided matching market, where players assign
quantitative utility values to each possible partner.

We now define the Shapley value of a NTU game (N, V ) (Shapley,
1969).

Definition 7. For λ ∈ Rn, let vλ(S) = sup{λS · x|x ∈ V (S)}, where
λS is the projection of λ to the s-dimensional subspace corresponding
to S. If this supremum is finite for all S, then vλ defines a TU game. A
Shapley value of (N, V ) is a point y in V̄ (N) (the closure of the image
of N under V ) such that there exists a positive vector λ with vλ defined
and λy = φ(vλ), where φ yields the Shapley value of the TU game vλ.

See Aumann (1985) or Peleg and Sudhölter (2003) for an exposition.

4.2. Matching Markets as NTU Games. We define a NTU game
to model the matching market as follows. Fix an instance of a matching
market (M,W,P ) and fix utilities representing the preferences in P ; so,
for example, for a man m we have um : W ∪{m} → R such that w ≥m
w′ if and only if um(w) ≥ um(m′). Without loss of generality, we choose
utilities so that um(m) = 0 and uw(w) = 0; that is, being single gives
zero utility for all m ∈ M and w ∈ W . Note that, in this setup with
numerical utilities, we have the potential for quantitative preference
effects instead of the outcome relying solely on relative preferences.
For instance, an agent now has the capacity to rank two players nearly
the same, or to really like or dislike a potential match.

Let N = M ∪W be the set of all players in the matching market.
For each coalition S ⊆ N of players, consider all the possible matchings
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between the players involved. Each player has a utility associated with
being paired to the other players, so each matching yields a vector y
of utilities corresponding to the involved players. Take V (S) to be the
set of all vectors x ∈ Rs such that xi ≤ yi for all components i of the
vectors for at least one utility vector y. Note that V (∅) = ∅ and for
all S 6= ∅, there exists at least one matching (specifically, the matching
corresponding to the zero vector, in which every player remains single),
implying V (S) 6= ∅. By construction, the defined function V also
satisfies conditions (ii), (iii), and (iv) above.

A matching market is uneven if the number of men differs from the
number of women. We also say that all agents are acceptable if, for
every agent, being single receives lower utility than being with anyone
of the opposite sex.

Proposition 8. If (M,W,P ) is an uneven matching market in which
all agents are acceptable, a Shapley value does not exist for the NTU
game induced by (M,W,P ).

Proof. Let (N, V ) be the NTU game associated to (M,W,P ). Fix one
λ ∈ Rn. From the construction of (N,V), vλ(S∪{p})−vλ(S) ≥ 0 for all
players p ∈ N . That is, no player can decrease the value of a coalition
when joining it. As all players are acceptable to at least one agent of
the opposite party, ∀p ∈ N,∃q ∈ N such that vλ({p, q})− vλ({q}) > 0.
This implies φ(vλ)p > 0 for each player p. However, since the parties
are uneven, for any matching µ of the players of N , at least one player
must remain single. Thus, y ∈ V (N) implies yi ≤ 0 for some i ∈ N .
This means that φ(vλ) /∈ V (N). Hence, since λ was arbitrary, there
cannot exist an NTU Shapley value in V (N). �

The proof of Proposition 8 suggests that an NTU Shapley value may
not exist in any but the most symmetric matching situations. We
proceed to show that, in the case that a Shapley value does exist,
it must correspond to a valid matching of the players in the market.
Further, in any market where there exists a single matching µ preferred
over all other matchings by every player, the NTU Shapley value of the
market is the utility vector corresponding to µ.

Proposition 9. If an NTU Shapley value exists in a one-to-one match-
ing market, then it must correspond to the utility vector of a matching.

Proof. Fix a matching market (M,W,P ) and let (N, V ) be the associ-
ated NTU game. Suppose y ∈ Rn is an NTU Shapley value of (N, V ),
obtained as the TU Shapley value of vλ. By efficiency of the TU Shap-
ley value (e.g. see Peleg and Sudhölter (2003)),

∑
i φ(vλ)i = vλ(N).
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Now, by definition, vλ(N) = sup{x ·λ|x ∈ V (N)}. Since φ(vλ)i = yiλi,
we have sup{x · λ|x ∈ V (N)} =

∑
i yiλi.

∑
i yiλi = y · λ by definition.

Now, V (N) is defined as the smallest comprehensive set in Rn that
contains the utility vectors of all possible matchings. Thus, y must
itself be the utility vector corresponding to a valid matching. �

Proposition 10. Suppose there is a matching µ in (M,W,P ) such
that, for all matchings ν and agents a, µ(a) ≥a ν(a). Then there is
exactly one Shapley value of the associated NTU game, and it is the
vector of utilities corresponding to µ.

Proof. Let y0 be the utility vector corresponding to the matching µ.
As µ(a) ≥a ν(a) for all possible matchings ν, the NTU game (N, V )
associated with the matching market (M,W,P ) is convex. As a con-
sequence, the set of NTU Shapley values must be nonempty (see The-
orem 6.3.1 in Ichiishi (1983)). From the proof of Proposition 9, if y is
a Shapley value, then y · λ = sup{x · λ|x ∈ V (N)}. In this case, as
V (N) = {x ∈ RN |x ≤ y0}, this implies the only possible Shapley value
is y0 itself. Therefore, y0 must be the unique NTU Shapley value of
the market. �

5. Coalitional monotonicity

The matching outcomes f(ρ) can, by analogy with the Shapley value,
be used to calculate “average” utilities when we think of each ordering
ρ as equally likely. For instance, in the case where players have differ-
ent partners in each of the stable matchings, the average utilities will
simply be the weighted average of the men-optimal and women-optimal
solutions, with weighting ratio equal to the ratio of men to women in
the game.

While in general the average utility values may not correspond to
an actual matching, they could serve as a measure of bargaining power
each player brings to the market. We now show, however, that the
resulting average utilities are not monotonic with respect to increased
utility opportunities. This finding is probably surprising, as the source
of increased utility comes from agents rising in the preferences of the
opposite sex. It is also pessimistic about the possibility of axiomatizing
f(ρ) using a variation of the systems of axioms used for the Shapley
value (Young, 1985).

We note that the failure of coalitional monotonicity is in a sense
inherent to matching problems: increasing in the preferences of an
undesired partner is typically bad for an agent.

A value is a function φ mapping NTU games (N, V ) into vectors
in Rn. Say that a value satisfies coalitional monotonicity if, for all
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players p and for all functions V and W , if it holds that both V (S) ⊇
W (S) ∀S ⊆ N with p ∈ S and V (T ) = W (T ) ∀T ⊆ N with p /∈ T ,
then it implies that φp(N, V ) ≥ φp(N,W ) (Young, 1985).

Proposition 11. The value obtained by averaging f(ρ) over all ρ ∈ R
does not satisfy coalitional monotonicity.

Proof. Show by counterexample. Consider the six-player market
({m1,m2,m3} , {w1, w2, w3} , P ) where P is given by the following util-
ity representations:

Man ∅ w1 w2 w3

m1 0 3 2 1
m2 0 2 3 1
m3 0 1 2 3

Woman ∅ m1 m2 m3

w1 0 2 3 1
w2 0 2 1 3
w3 0 1 2 3

By averaging f(ρ) over all ρ ∈ R we obtain approximately the vector
of utilities

(2.42, 2.42, 3.00, 2.58, 1.58, 3.00).2

Consider now if w3 changes her preferences to prefer m1 as depicted
below:

Man ∅ w1 w2 w3

m1 0 3 2 1
m2 0 2 3 1
m3 0 1 2 3

Woman ∅ m1 m2 m3

w1 0 2 3 1
w2 0 2 1 3
w3 0 4 2 3

If modeled as a NTU game with value function V (as described
above), we see that V ({m1, w3}) will increase from {x ∈ R2|x ≤ (1, 1)}
to {x ∈ R2|x ≤ (1, 4)} after this change. Also, for every coalition S s.t.
m1 ∈ S, V (S) will remain constant or increase, and every coalition T
with m1 /∈ T will remain unaffected.

However, the new vector obtained by averaging f(ρ) is

(2.00, 2.42, 2.58, 2.58, 2.00, 3.42).

Note that the component corresponding to m1 decreased from 2.42 to
2.00. �
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