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Abstract. Motivated by the goal of securely searching and updating dis-
tributed data, we introduce and study the notion of function secret shar-
ing (FSS). This new notion is a natural generalization of distributed point
functions (DPF), a primitive that was recently introduced by Gilboa and
Ishai (Eurocrypt 2014). Given a positive integer p ≥ 2 and a class F of
functions f : {0, 1}n → G, where G is an Abelian group, a p-party FSS
scheme for F allows one to split each f ∈ F into p succinctly described
functions fi : {0, 1}n → G, 1 ≤ i ≤ p, such that: (1)

∑p
i=1 fi = f , and

(2) any strict subset of the fi hides f . Thus, an FSS for F can be thought
of as method for succinctly performing an “additive secret sharing” of
functions from F . The original definition of DPF coincides with a two-
party FSS for the class of point functions, namely the class of functions
that have a nonzero output on at most one input.
We present two types of results. First, we obtain efficiency improvements
and extensions of the original DPF construction. Then, we initiate a sys-
tematic study of general FSS, providing some constructions and estab-
lishing relations with other cryptographic primitives. More concretely,
we obtain the following main results:

– Improved DPF. We present an improved (two-party) DPF con-
struction from a pseudorandom generator (PRG), reducing the length
of the key describing each fi from O(λ · nlog2 3) to O(λn), where λ
is the PRG seed length.

– Multi-party DPF. We present the first nontrivial construction of
a p-party DPF for p ≥ 3, obtaining a near-quadratic improvement
over a naive construction that additively shares the truth-table of f .
This constrcution too can be based on any PRG.

– FSS for simple functions. We present efficient PRG-based FSS
constructions for natural function classes that extend point func-
tions, including interval functions and partial matching functions.

– A study of general FSS. We show several relations between gen-
eral FSS and other cryptographic primitives. These include a con-
struction of general FSS via obfuscation, an indication for the im-
plausibility of constructing general FSS from weak cryptographic
assumptions such as the existence of one-way functions, a complete-
ness result, and a relation with pseudorandom functions.
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1 Introduction

A secret sharing scheme [44] allows a dealer to randomly split a secret
s into p shares, such that certain subsets of the shares can be used to
reconstruct the secret and others reveal nothing about it. The simplest
type of secret sharing is additive secret sharing, where the secret is an
element of an Abelian group G, it can be reconstructed by adding all p
shares, and every subset of p−1 shares reveals nothing about the secret.
A useful feature of this secret sharing scheme is that it is homomorphic
in the sense that if p parties hold shares of many secrets, they can lo-
cally compute shares of the sum of all secrets. This feature of additive
secret sharing (more generally, linear secret sharing) is useful for many
cryptographic applications.
In this work we study the following natural extension of additive secret
sharing. Suppose we are given a class F of efficiently computable and
succinctly described functions f : {0, 1}n → G. Is it possible to split
an arbitrary f ∈ F into p functions f1, . . . , fp such that: (1) f(x) =∑p
i=1 fi(x) (on every input x), (2) each fi is described by a short key ki

that enables its efficient evaluation, yet (3) any strict subset of the keys
completely hides f? We refer to a solution to this problem as a function
secret sharing (FSS) scheme for F .
If one insists on perfectly hiding f , then it can be shown that, even
for very simple classes F , the best possible solution is to additively
share the truth-table representation of f , whose shares consist of 2n

group elements. But if one considers the computational notion of hid-
ing, then there are no apparent limitations to what can be done for
polynomial-time computable f . The power of such computationally hid-
ing FSS schemes is the main question considered in this work.
We note that other types of secret sharing of functions have been consid-
ered in the literature, mostly in the context of threshold cryptography
(cf. [18, 16]). However, these other notions either apply only to very spe-
cific function classes that enjoy homomorphism properties compatible
with the secret sharing, or alternatively they do not require an additive
(or homomorphic) representation of the output which is essential for the
applications we consider.
A useful instance of FSS, recently introduced by Gilboa and Ishai [26],
is a distributed point function (DPF). A DPF can be viewed as a 2-party
FSS for the function class F consisting of all point functions, namely
all functions f : {0, 1}n → G that evaluate to 0 on all but at most one
input. For x ∈ {0, 1}n and y ∈ G, we denote by fx,y the point function
that evaluates to y on input x and to 0 on all other inputs. The main
result of [26] was an efficient construction of a DPF from any pseudoran-
dom generator (PRG), or equivalently any one-way function [34].3 More
concretely, given a PRG with seed length λ, the length of each key ki is
O(λ · nlog2 3).
The DPF problem was motivated in [26] by applications to improving the
communication and computation complexity of 2-server private informa-

3 The construction from [26] is described for the special case where G = Zm2 , but it
can be easily extended to the case of a general Abelian G.
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tion retrieval (PIR) [15, 14, 38] and related problems, as well as by the
complexity theoretic problem of worst-case to average-case reductions.

To further motivate the questions considered in this work, we discuss
two typical application scenarios for DPF and the benefits that could be
gained by extending DPF to more general instances of FSS.

Multi-server PIR and secure keyword search. Suppose that each
of p servers holds a database D of m keywords wj ∈ {0, 1}n. A client
wants to count the number of occurrences of a given keyword w without
revealing w to any strict subset of the servers. Letting G = Zm+1 and
f = fw,1, the client splits f into p additive shares and sends to server i
the key ki describing fi. Server i computes and sends back to the client∑
wj∈D fi(wj). The client can find the number of matches by adding

the p group elements received from the servers. In this application, FSS
for other classes F can be used to accommodate richer types of search
queries, such as counting the number of keywords that lie in an interval,
satisfy a fuzzy match criterion, etc. We note that by using standard
randomized sketching techniques, one can obtain similar solutions that
do not only count the number of matches but also return the payloads
associated with a bounded number of matches (see, e.g., [41]).

Incremental secret sharing. Suppose that we want to collect statis-
tics about web usage of mobile devices without compromising the privacy
of individual users, and while allowing fast collection of real-time aggre-
gate usage data. A natural solution is to maintain a large secret-shared
array of group elements between p servers, where each entry in the array
is initialized to 0 and is incremented whenever the corresponding web
site is visited. A client who visits URL u can now secret-share the point
function f = fu,1, and each server i updates its shared entry of each
URL uj by locally adding fi(uj) to this share. The end result is that
only position uj in the shared array is incremented, while no collusions
involving strict subsets of servers learn which entry was incremented.4

Here too, applying general FSS can allow for more general “attribute-
based” writing patterns, such as secretly incrementing all entries whose
public attributes satisfy some secret predicate. The above incremental
secret sharing primitive can be used to obtain low-communication solu-
tions to the problem of private information storage [40], the “writing”
analogue of PIR.

1.1 Our Contribution

In this work we improve and extend the work of [26], presenting two types
of results. First, we improve the efficiency of the previous DPF construc-
tion and obtain the first nontrivial p-party DPF constructions for p ≥ 3.
Second, we initiate a systematic study of general FSS, providing some

4 Handling malicious clients who may try to tamper with this process is beyond the
scope of this work; we note, however, that due to the succinctness and simple struc-
ture of FSS shares one could employ general techniques for secure multiparty com-
putation for this purpose without a major toll on efficiency.



4 Boyle et al.

constructions and establishing relations with other cryptographic prim-
itives. More concretely, we obtain the following main results:

Improved DPF. We present an improved (two-party) DPF construction
from one-way functions, reducing the length of the key describing each
fi from O(λ · nlog2 3) to O(λn), where λ is a security parameter (that
can be thought of as the seed length of a PRG) and n is the input and
output length. We also obtain a similar improvement in the evaluation
time. This improvement can have relevance to the practical efficiency of
2-server PIR and related primitives.

Multi-party DPF. We provide the first nontrivial construction of a
p-party DPF for p ≥ 3, obtaining a near-quadratic improvement over
a naive construction that additively shares the truth-table of f . This
construction too can be based on the (necessary) assumption that a one-
way function exists. More concretely, letting N = 2n denote the input
domain size and λ a PRG seed length, the length of each DPF key ki is
O(λ · 2p/2 ·N1/2). Improving the asymptotic dependence on N (without
relying on stronger assumptions) is one of the main questions left open
by this work. For p ≥ 3, our p-party DPF implies the first p-server,
(p − 1)-private PIR protocols with sublinear query length and constant
answer length, as well as the first (p−1)-private sublinear-communication
storage schemes in the model of [40].

FSS for simple functions. We present efficient PRG-based FSS con-
structions for natural function classes that go beyond point functions.
These include interval functions and instances of partial matching func-
tions. As illustrated above, such extensions can be used to support more
general search queries or selection criteria.

A study of general FSS. We initiate a study of general FSS by show-
ing several relations between FSS and other primitives. In particular, we
obtain the following results:

– We observe that FSS for general polynomial-time computable func-
tions can be obtained from an ideal obfuscation and one-way func-
tions. This implies (using [2]) a provable construction in the generic
multilinear map model, as well as a heuristic construction using ex-
isting candidates. Furthermore, building on a recent work of Canetti
et al. [13], we obtain a similar result based on Indistinguishability
Obfuscation (iO) with sub-exponential security.

– Complementing the above, we give evidence against the possibility
of constructing general FSS from weak cryptographic assumptions
such as the existence of one-way functions or even oblivious transfer.
We do this by showing that general FSS implies low-communication
protocols for secure two-party computation that rely on a reusable
source of correlated randomness (that can be realized via one-time
offline preprocessing). Currently all known approaches for obtain-
ing such protocols rely on fully homomorphic encryption or related
primitives. We show that a similar “barrier” applies even to FSS for
the complexity class AC0. This should be contrasted with our PRG-
based positive results, which apply to strict sub-classes of AC0.
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– We prove the following completeness result: assuming the hardness
of LWE, there is a class F of functions in NC1 such that an efficient
FSS for F implies an efficient FSS for arbitrary polynomial-time
computable functions.

– We show that in an FSS scheme for any “sufficiently rich” function
class F (which covers point functions as a special case), each share fi
must define a pseudorandom function. Note that this is not a-priori
clear from the security definition, which only requires that the shares
hide f .

1.2 Related Work

In this section we discuss alternative approaches for tackling the mo-
tivating applications for DPF and FSS discussed above. Compared to
our PRG-based constructions, all of these approaches have significant
limitations in efficiency or security.

Information-theoretic multi-server PIR. The notion of p-party
DPF roughly corresponds to a p-server PIR protocol with 1-bit answers
and computational privacy against any p− 1 servers. In this setting, in-
sisting on information-theoretic privacy implies that the length of the
query sent to each server must be linear in the database size [5, 45]. This
barrier can be overcome by either settling for a lower privacy threshold
t < p − 1 or allowing for longer answers. (The latter relaxation is not
suitable for applications that involve “writing,” and results in PIR pro-
tocols that have poor information rate when applied to databases with
long records.) Even with the above relaxations, the asymptotic commu-
nication complexity of the best known information-theoretic PIR proto-
cols [15, 47, 21, 4, 6, 19] is worse than that of DPF-based protocols.

Single-server PIR. Single-server, computationally-private PIR proto-
cols [38, 12, 39] can achieve similar communication complexity to DPF-
based 2-server protocols, and moreover they have the advantages of re-
quiring only one server and not being vulnerable to colluding servers.
However, they are not suitable for applications that involve writing,
they cannot support constant-size answers, and they do not extend to
the richer type of queries supported by our PRG-based FSS construc-
tions (except when using fully homomorphic encryption, discussed be-
low). Perhaps most importantly, single-server PIR protocols make an
intensive (and in some sense inherent [20]) use of public-key cryptog-
raphy, compared to our PRG-based constructions for DPF and simple
instances of FSS. Thus, the computational overhead on the server side,
which typically forms the practical efficiency bottleneck, can be much
lower in DPF-based protocols.

FHE and TFHE. Fully homomorphic encryption (FHE) [23] can be
used to accommodate the richer query types implied by general FSS.
However, the other limitations of PIR discussed above apply also to FHE-
based protocols, and moreover the concrete computational cost of current
implementations is even worse. Constructions of a threshold variant of
FHE (TFHE) from [1] can be used to realize a relaxed form of FSS, where
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the output of the function f is secret-shared in a more redundant way
that nevertheless still supports homomorphic additions and allows for
efficient decoding of the output from the shares without the knowledge
of a secret key. However, TFHE is a stronger primitive than standard
FHE and its implementations are even less efficient. We note that our
barriers for general FSS from weak assumptions do not apply to FHE-
based constructions, leaving open the possibility of realizing our general
notion of FSS from FHE or specific assumptions such as LWE.

Oblivious RAM. Oblivious RAM (ORAM) [31] allows a client to effi-
ciently access data stored on a remote server while hiding the contents of
the data and the locations being accessed. However, despite the super-
ficial similarity to the PIR scenario considered here, ORAM addresses
a very different problem. In particular, ORAM requires that the client
“own” the data and does not directly apply in the case where the data
to be accessed comes from other sources, nor does it scale efficiently in
the case of read and write operations by many clients who do not trust
each other.

Organization. In Section 2 we formally define our notion of FSS and
discuss several variants and relaxations of this notion. In Section 3 we de-
scribe new PRG-based constructions of DPF schemes and FSS schemes
for simple function classes, as well as a general FSS construction via
general-purpose obfuscation. Finally, in Section 4 we relate the FSS
primitive to other cryptographic primitives and present some barriers
to basing general FSS on weak primitives such as a one-way function.

2 Function Secret Sharing

We now formally define our notion of a function secret sharing (FSS)
scheme. Recall that, unlike “standard” secret sharing for individual el-
ements, we begin with the description of a function f that we wish to
share among parties. The FSS scheme provides a means to split this
function into separate keys, where each party’s key enables him to effi-
ciently generate a standard secret share of the evaluation f(x), and yet
each key individually does not reveal information about which function
f has been shared.
Note that FSS schemes can differ in the underlying procedure for recov-
ering f(x) from the parties’ key-computed shares (including the number
of shares), and also in the relevant function class F for which correctness
and security are supported. In what follows, we present a general version
of this definition, allowing arbitrary output decoding procedures; how-
ever, in this work we focus on the setting in which the output decoder is
a fixed linear function of parties’ output shares. Namely, decoding will
correspond to taking the sum of the output shares over an Abelian group
structure. We discuss this choice of decoding structures below.

Definition 1 (Output Decoder). A p-party share output decoder
DEC is a tuple (S1, . . . , Sp, R,Dec) specifying: share spaces S1, . . . , Sp
for each of the p parties; output space R; and a decoder function Dec :
S1 × · · · × Sp → R taking parties’ shares to an output.
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We define the p-party additive output decoder for an Abelian group G
to be the tuple DEC = ((G, · · · ,G),G,Dec+), where Dec+(g1, . . . , gp) =∑p
i=1 gi computes the sum of elements w.r.t. the group operator of G.

Remark 1 (Modeling Function Families). We model a function family F
as an infinite collection of bit strings f (“functions”), together with ef-
ficient procedures IdentifyDomain and Evaluate, such that the procedure
Df ← IdentifyDomain(1λ, f) interprets from the string f its correspond-
ing input domain space, and y ← Evaluate(f, x), for any input x ∈ Df ,
defines the “output” of f at x. By convention, we assume the description
of f includes also the input length and output length of f . We refer the
reader to e.g. [36] for a complete formal description of this model.
For simplicity of notation, in this work we will refer to the domain
Df of f without making explicit reference to the corresponding call to
IdentifyDomain, and will denote an evaluation Evaluate(f, x) by short-
hand notation “f(x).”

Definition 2 (Function Secret Sharing). For p ∈ N, T ⊆ [p], a p-
party, T -secure function secret sharing (FSS) scheme with respect to share
output decoder DEC = (S1, . . . , Sp, R,Dec) and function class F is a pair
of PPT algorithms (Gen,Eval) with the following syntax:

– Gen(1λ, f): On input the security parameter 1λ and function descrip-
tion f ∈ F , the key generation algorithm outputs p keys, (k1, . . . , kp).

– Eval(i, ki, x): On input a party index i, key ki (which we assume to
encode the input and output domains D,R of the shared function)
and input string x ∈ D, the evaluation algorithm outputs a value
yi ∈ Si, corresponding to this party’s share of f(x).

satisfying the following correctness and secrecy requirements:
– Correctness: For all f ∈ F , x ∈ Df ,

Pr
[
(k1, . . . , kp)← Gen(1λ, f)

: Dec
(
Eval(1, k1, x), . . . ,Eval(p, kp, x)

)
= f(x)

]
= 1.

– Security: Consider the following indistinguishability challenge ex-
periment for corrupted parties T ⊂ [p]:

1: The adversary outputs (f0, f1, state)← A(1λ), where f0, f1 ∈ F
with Df0 = Df1 .

2: The challenger samples b← {0, 1} and (k1, . . . , kp)← Gen(1λ, fb).
3: The adversary outputs a guess b′ ← A((ki)i∈T , state), given the

keys for corrupted T .

Denote by Adv(1λ,A) := Pr[b = b′] − 1/2 as the advantage of A
in guessing b in the above experiment, where probability is taken
over the randomness of the challenger and of A. We say the scheme
(Gen,Eval) is T -secure if there exists a negligible function ν such that
for all non-uniform PPT adversaries A, it holds that Adv(1λ,A) ≤
ν(λ).

Unless otherwise specified, we naturally interpret the output domain of
the function f as an Abelian group G (in particular, {0, 1}n is interpreted
as an Abelian group with respect to the xor group operator ⊕), and DEC
is the corresponding additive output decoder as specified in Definition 1.
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Remark 2. A few remarks about our definition.

1. (Adversary Structure). We say an FSS scheme is t-secure for thresh-
old t < p if it is T -secure for all T ⊂ [p] of size |T | ≤ t. By default,
when not otherwise specified, “secure FSS” will refer to (p − 1)-
security, in which any strict subset of parties may be corrupted.

2. (Variable Output Domains). For simplicity, we take the convention
that all functions within a class F share the same output domain
(i.e., f : Df → R for shared R). We may also extend in a straight-
forward way to the setting in which each function f has a possibly
different output domain Rf . The corresponding security will be re-
quired to hold with respect to pairs of functions f0, f1 ∈ F with both
matching domains (Df0 = Df1) and ranges (Rf0 = Rf1).

3. (Simulation-Based Security). Our game-based security definition mir-
rors that of semantic security, where the shares of corrupted parties
play the role of an “encryption” of f . As with semantic security, our
game-based indistinguishability security definition can equivalently
be expressed as a simulation-based definition, where one must be
able to simulate the distribution of corrupted parties’ shares with-
out knowledge of the shared function f (cf. [32, 28]).

Output Decoding Schemes. The FSS definition above is presented with
respect to an arbitrary choice of output decoding function Dec. Based
on the structure of the chosen decoding process, the corresponding FSS
scheme will have very different properties. For example, more complex
decoding procedures Dec open the possibility of achieving FSS for more
general classes of functions F , but place limits on the applicability of the
resulting scheme. Many choices for the structure of the output decoding
function yield uninteresting notions, as we now discuss.

Arbitrary reconstruction. Consider, for example, the FSS notion as
defined, but with no restriction on the reconstruction procedure for
parties’ output shares. Such wide freedom will render the notion non-
meaningful, as it gives rise to trivial constructions. Indeed, for any effi-
cient function family F , one can generate FSS keys for a secret function
f ∈ F simply by sharing a description of f interpreted as a string, using
a standard secret sharing scheme. The evaluation procedure on any in-
put x will simply output x together with the party’s share of f , and the
decoding procedure Dec will first reconstruct the description of f , and
then compute and output the value f(x).
This construction satisfies correctness and security as specified above
(indeed, each party’s key individually reveals no information on f). But,
the scheme clearly leaves much to be desired in terms of utility: From
just one evaluation, the entire function f is revealed to whichever party
receives and reconstructs these output shares. At such point, the whole
notion of function secret sharing becomes moot.

“Function-private” output shares. Instead, from a function secret
sharing scheme, one would hope that parties’ output shares (resulting
from executing Eval) for input x do not reveal more about the secret
function f than is necessary to determine f(x). That is, we may impose a
“function privacy” requirement on the reconstruction scheme, requiring
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that pairs of parties’ output shares for each input x can be simulated
given just the corresponding outputs f(x).

This requirement is both natural and beneficial, but by itself still allows
for undesired constructions. For example, given a secret function f , take
one FSS key to be a garbled circuit of f , and the second key as the in-
formation that enables translating inputs x to garbled input labels. This
provides a straightforward function-private solution for one output eval-
uation, and can easily be extended to the many-output case by adding
shared secret randomness to the parties’ keys.5 Yet this construction (and
thus definition) is unsatisfying: although the output shares now hide f ,
their size is massive—for every output, comparable to a copy of f itself.

Succinct, function-private output shares. We thus further restrict
the scheme, demanding additionally that output shares be succinct: i.e.,
comparable in size to the function output. This definition already cap-
tures a strong, interesting primitive. For example, as shown in Sec-
tion 4.2, achieving such an FSS scheme for general functions implies a
form of communication-efficient secure multi-party computation that is
currently only achievable using advanced cryptographic machinery (i.e.,
fully homomorphic encryption or reusable garbled circuits). However,
there is one final property that enables an important class of applica-
tions, but which is not yet guaranteed: a notion of share compressibility.

Let us explore this property. Recall that one of the exciting applica-
tion regimes of distributed point functions (DPF) [26] was enabling
communication-efficient secure (2-server) Private Information Retrieval
(PIR). Intuitively, to privately recover an item xi from a database held
by both servers, one can generate and distribute a pair of DPF keys
encoding a point function fi whose only nonzero output is at secret lo-
cation i. Each server then responds with a single element, computed as
the weighted sum of each data item xj with the server’s output share of
the evaluation fi(xj). Correctness of the DPF scheme implies that the
xor of the two servers’ replies is precisely the desired data item xi, while
security guarantees the servers learn nothing about the index i. But most
importantly, the linear structure of the DPF reconstruction enabled the
output shares pertaining to all the different elements of the database to
be compressed into a single short response.

On the other hand, consider, for example, the PIR scenario but where
the servers instead hold shares of the function fi with respect to a bitwise
AND reconstruction of output shares in the place of xor/addition. Recov-
ery of the requested data item xi now implies computing set intersection—
and thus requires communication complexity equal to the size of the
database [37]! In extending the DPF notion to more general FSS primi-
tives, we wish to preserve and extend this class of applications. We thus
maintain the crucial property that output shares can be combined and
compressed in a meaningful way. To do so, we remain in stride with the
linearity of output share decoding.

5 Namely, for each new x, the parties will first use their shared randomness to coor-
dinately rerandomize the garbled circuit of f and input labels, respectively.
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Our setting: Linear share decoding. In this work, we focus purely on
the setting of FSS where the output decoder is a linear function of par-
ties’ shares: specifically, the additive output decoder as in Definition 1.
This clean, intuitive structure in fact provides the desired properties
discussed above: Linearity of reconstruction provides convenient share
compressibility. Output shares must themselves be elements of the func-
tion output space, immediately guaranteeing share succinctness. And as
we show in Section 4.1, the linear reconstruction in conjunction with
basic key security directly implies function privacy.

We hence restrict our attention to this setting, and unless otherwise
specified will implicitly take an “FSS scheme” to be one with a linear
reconstruction procedure DEC defined above.

2.1 Preliminaries

In this work, we make use of several cryptographic tools. For formal def-
initions of the notions of computational indistinguishability, pseudoran-
dom generators, and pseudorandom functions, we refer the reader to [28].
For fully homomorphic encryption definitions and constructions, see,
e.g., [23, 25, 10]. And, for program obfuscation, see virtual black-box [3],
indistinguishability obfuscation (iO) [3, 22], and probabilistic iO [13].

3 New Constructions

In the following section, we present several new constructions of FSS
schemes for various function families.

We begin in Section 3.1 by showing two new constructions for the family
of point functions. The first is a two-key construction that significantly
reduces the key size and computational complexity compared to all pre-
vious constructions. The second is the first p-key construction, secure
against coalitions of up to p− 1 key holders, with key size a square root
of what a trivial construction achieves.

In Section 3.2, we go beyond the family of point functions in several ways.
We identify general low-level transformations that modify an existing
FSS scheme into one for a modified function class. We combine some of
these general transformations, in addition to existing FSS schemes, to
yield constructions for more expressive function families. In addition, we
extend the previous results for point functions to include the family of
interval functions with minimal overhead.

In Section 3.3, we show that FSS for general efficient functionalities is
implied by certain forms of program obfuscation (namely, virtual black-
box or sub-exponentially secure indistinguishability obfuscation).

3.1 Point Functions

Definition 3. For a, b ∈ {0, 1}n, the point function Pa,b : {0, 1}n →
{0, 1}m is defined by Pa,b(a) = b and Pa,b(a

′) = 0m for all a′ 6= a.
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We begin by describing a construction for the class of two-party point
functions Pa,b(x) : {0, 1}n → {0, 1}m. The scheme we show, (Gen•,Eval•),
reduces the key size and the computational complexity compared to the
construction of distributed point functions in [26], from O(λnlog 3) to
O(λn), making use of a pseudorandom generator with seed length λ.
(Gen•,Eval•) are given by Algorithms 1 and 2.
At a high level, the scheme works as follows. Each party’s key, k0 and
k1, defines a binary tree of depth n with a pseudo-random string at each
node (the strings are the S||T ’s defined in lines 9 and 10 of Algorithm
2). The binary trees defined by k0 and k1 are identical except for the
path from the root to the target point a = a1, . . . , an. On this path, the
strings in the two trees are chosen pseudo-randomly and independently
of each other.
Eval•(β, kβ , x) traverses a path in the tree that kβ defines from the root
to x = x1, . . . , xn, computing the strings along the path. At each node
with string Sβ0 [i]||Sβ1 [i]||T β0 [i]||T β1 [i], Eval• computes the corresponding
strings for its xith child (left or right) by expanding either the left or right
seed Sβxi [i] using the pseudo-random generator G(Sβxi [i]), and adding in
“correction” strings cs, ct (from the key kβ) to the corresponding “s”
and “t” portions of the expanded output, as dictated by the bit T βxi [i].
The function of Gen•(1λ, a, b) is to ensure the correct creation of the two
trees. Specifically, it ensures that at the exact point that a prefix of x
diverges from the path to a, Eval•(0, k0, x) and Eval•(1, k1, x) compute
the same strings S, T . (Then, for any path continuing from this point,
the values will always remain equal). For prefixes that diverge at the
root (i.e., a1 6= x1), each key includes the same string since lines 2, 3 sets
S1
¬a1 [1] = S0

¬a1 [1] and T 1
¬a1 [1] = T 0

¬a1 [1] (superscript here is party id).
Any other location of diverging prefixes is resolved by setting the correct
strings cs, ct in lines 6-9 of Algorithm 1.
Gen• has a negligble probability of failure (expressed by setting w ← 0),
which is a result of generating equal random values for S0

an [n] = S1
an [n].

It is always possible to run Gen• again if it fails. In Algorithm 5 we show
how to obtain a scheme without any error.
Intuitively, security holds for (Gen•,Eval•) because all information re-
lated to the point function fa,b is encoded in the strings cs, ct, masked
by pseudorandom strings whose seeds appear only in the other party’s
key. Note that the original values S, T in lines 2,3 are completely inde-
pendent of the point function.
Due to space limitations, we refer the reader to the full version of this
work for a complete proof of correctness and security of (Gen•,Eval•).

Notation 1 We use the following notational conventions in Algorithms
1 and 2. Superscripts denote the party id, and are used for strings ap-
pearing in the tree defined by this party’s key. Square brackets denote the
depth of a node in the tree, ranging from 1 to n. One or two binary-valued
subscripts are used to distinguish between strings that are associated with
a specific node in the tree (e.g., to be used when continuing to the left or
right from this node). For example Sβα[i] is in the tree defined by party
β’s key kβ at depth i, and is one of two strings (the other is Sβ¬α[i]) at a
specific node in the tree.
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Algorithm 1 Gen•(1λ, a, b)

1: Let G : {0, 1}λ −→ {0, 1}max{2λ+2,m} be a PRG.
2: Choose three random seeds S0

a1 [1], S1
a1 [1], S0

¬a1 [1] ∈ {0, 1}λ and set S1
¬a1 [1] ←

S0
¬a1 [1].

3: Choose four random bits T βα [1], for α, β ∈ {0, 1}, subject to T 0
a1 [1] 6= T 1

a1 [1] and
T 0
¬a1 [1] = T 1

¬a1 [1].
4: for i = 1 to n− 1 do
5: Let G(Sβai [i]) = sβ0 ||s

β
1 ||t

β
0 ||t

β
1 , where sβα ∈ {0, 1}λ, tβα ∈ {0, 1} for α, β ∈ {0, 1}.

6: Randomly choose cs0,ai+1 , cs1,ai+1 ∈ {0, 1}λ.

7: Randomly choose cs0,¬ai+1 , cs1,¬ai+1 ∈ {0, 1}λ subject to
⊕1

β=0(csβ,¬ai+1 ⊕
sβ¬ai+1

) = 0.

8: Randomly choose ct0,ai+1 , ct1,ai+1 ∈ {0, 1} subject to
⊕1

β=0(ctβ,ai+1 ⊕ t
β
ai+1

) =
1.

9: Randomly choose ct0,¬ai+1 , ct1,¬ai+1 ∈ {0, 1} subject to
⊕1

β=0(ctβ,¬ai+1 ⊕
tβ¬ai+1

) = 0.
10: Set CWβ [i]← csβ,0||csβ,1||ctβ,0||ctβ,1 for β = 0, 1.
11: Set Sβα[i+ 1]← sβα ⊕ csτ,α for τ = T βai [i] and α, β ∈ {0, 1}.
12: Set T βα [i+ 1]← tβα ⊕ ctτ,α for τ = T βai [i] and α, β ∈ {0, 1}.
13: end for
14: if G(S0

an [n]) 6= G(S1
an [n]) then

15: Set w ← (G(S0
an [n]) +G(S1

an [n]))−1 · b with arithmetic over F2m .
16: else
17: Set w ← 0.
18: end if
19: Set kβ ← ((Sβ0 [1], Sβ1 [1], T β0 [1], T β1 [1]), (CW0[1], CW1[1], . . . , CW0[n − 1], CW1[n −

1]), w).
20: Return (k0, k1).

A p-party protocol. For some applications, one may wish to share a
function f among several parties. In this setting, there is an additional
challenge in maintaining security against collusions of corrupted parties.
Note that for any family of functions F : {0, 1}n → {0, 1}m, we can
trivially support secret sharing of F across p parties with security against
coalitions of up to p−1 keys, with key size 2n ·m. Indeed, this amounts to
simply secret sharing the entire evaluation table of the function f among
parties as a string: Gen(1λ, f) chooses p random strings k1, . . . , kp ∈
{0, 1}2

n·m such that
⊕p

i=1 ki[x] = f(x) for all x ∈ {0, 1}n.
We now present a scheme (Genp0 ,Evalp0) sharing a DPF Pa,b : {0, 1}n →
{0, 1}m, secure against any coalition of at most p−1 key holders, and with
key length O(2n/2 · 2p/2 ·m). For a constant number of parties p ∈ O(1),
this corresponds to a square root of the key length in the trivial solution.
At a high level, the scheme (Genp0 ,Evalp0) works as follows. Consider
the 2n-entry evaluation table of the secret function fa,b as a 2n/2 × 2n/2

grid6, where rows and columns are indexed by the first and second n/2

6 The dimensions of the table in the algorithm are slightly different, which results in
reducing the key size by a factor of 2p/2.
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Algorithm 2 Eval•(β, kβ , x)

1: Let G : {0, 1}λ −→ {0, 1}max{2λ+2,m} be a PRG.
2: Let the binary representation of x be x = x1, . . . , xn.
3: Parse kβ as kβ = ((Sβ0 [1], Sβ1 [1], T β0 [1], T β1 [1]), (CW0[1], CW1[1], . . . , CW0[n −

1], CW1[n− 1]), w).
4: Set S ← Sβx1 [1].
5: Set T ← T βx1 [1].
6: for i = 2 to n do
7: Parse G(S) as G(S) = s0||s1||t0||t1.
8: Parse CWT [i− 1] as CWT [i− 1] = csT,0||csT,1||ctT,0||ctT,1.
9: Set S ← sxi ⊕ csT,xi .

10: Set T ← txi ⊕ ctT,xi .
11: end for
12: Return G(S) · w with arithmetic over F2m .

bits of the input. The algorithm Genp0 generates the following values:
For each row γ′ ∈ {0, 1}n/2 in this table, it samples 2p−1 random λ-bit
strings sγ′,1, . . . , sγ′,2p−1 ∈ {0, 1}λ to be used as seeds for a pseudoran-
dom generator (PRG) G. In addition, it generates 2p−1 total (not per

row) “correction words” cw1, . . . , cw2p−1 ∈ ({0, 1}m)2
n/2

, as a function
of the strings sγ′,` and the secret function Pa,b. Each party i receives as
its key the collection of all 2p−1 correction words and some subset of the
PRG seeds. The algorithm Evalp0 , given a party’s key and input x, parses
x = (γ′, δ′) ∈ {0, 1}n/2×{0, 1}n/2, takes its set of PRG seeds correspond-

ing to the row γ′, expands each via G to a vector ({0, 1}m)2
n/2

which
matches the form of a row in the function evaluation table, takes the
exclusive-or of all the expanded vectors together with the corresponding
subset of correction words (i.e. the subset of {cwj : j ∈ [2p−1]} for which
its key contained the jth row-γ′ seed sγ′,j), and outputs the (δ′)th com-
ponent of this row vector. Collectively, this description corresponds to
Step 6 of Algorithm 4.
The subset of seeds, and the generation of the correction words is chosen
by Genp0 so as to ensure the following properties:
1. For each row γ′ not equal to the special row γ, and for each of the

2p−1 PRG seeds sγ′,j corresponding to this row, it will hold that the
number of parties holding sγ′,j in their key is even. Thus, during
the evaluation phase, all contributions from G(sγ′,j) and from its
corresponding jth correction word cwj will cancel out, leaving the
desired 0 evaluation.

2. For the special row γ, each sγ,j will appear in an odd number of
parties’ keys. This means there will be exactly one copy of each
G(sγ,j) and each cwj remaining in the combined evaluation xor from
all parties. Further, for each party i, there is at least one seed sγ,j
(in our construction, exactly one) for which party i is the only party
given sγ,j . This will be important for security, as G(sγ,j) for the
uncorrupted party will serve as a mask to hide information on Pa,b
in the correction words.
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3. Given any p− 1 keys, Case (1) and (2) are indistinguishable.
4. The correction words cwj , j ∈ [2p−1] are chosen randomly subject

to the constraint
⊕2p−1

j=1 (cwj ⊕ G(sγ,j)) = eδ · b, where eδ denotes
the unit vector whose δth component is equal to 1. From Property
(2), this constraint exactly yields the required correctness guarantee.
And, since the cwj are random up to this condition, then even given
any (2p−1 − 1) of the seeds sγ,j (but with one missing), the distri-
bution of these seeds together with all the cwj ’s is computationally
indistinguishable from random.

We now proceed to describe the scheme with these properties.
Given natural numbers p and q, it is readily apparent that for exactly
qp−1 of the sequences of length p over the set {0, . . . , q − 1} the sum of
the p elements modulo q is 0 and for exactly qp−1 of these sequences the
sum of all the elements modulo q is 1. (One way to deduce this statement
is that given any choice of the first p− 1 elements in {0, . . . , q− 1} there
is a single choice for the last element that makes the sum of the whole
sequence 1 and a single choice that makes the sum 0). For the special
case of q = 2 we introduce the following useful notation.

Notation 2 Given p ∈ N, let Ep and Op denote subsets of binary arrays
of size p×2p−1. Let Ep denote the set of all arrays such that the columns
of each array are all the p-bit strings with an even number of 1 bits and
let Op denote the set of all arrays such that the columns of each array
are all the p-bit strings with an odd number of 1 bits. We use A ∈R Ep
(or A ∈R Op) to denote that A is randomly sampled from Ep (Op). We
use ea · b to denote a vector of length 2|a| with b in location a and 0 in
all other locations.

We present the p-party FSS scheme for point functions (Genp0 ,Evalp0)
in Algorithms 3 and 4.

Algorithm 3 Genp0(1λ, a, b)

1: Let G : {0, 1}λ −→ {0, 1}mµ be a PRG (µ is defined in line 2).
2: Let µ← d2n/2 · 2(p−1)/2e and let ν ← d2n/µe.
3: Regard a as a pair a = (γ, δ), γ ∈ [ν], δ ∈ [µ].
4: Choose ν arrays A1, . . . , Aν , s.t. Aγ ∈R Op and Aγ′ ∈R Ep for all γ′ 6= γ.
5: Choose randomly and independently ν · 2p−1 seeds s1,1, . . . , sν,2p−1 ∈ {0, 1}λ.

6: Choose 2p−1 random strings cw1, . . . , cw2p−1 ∈ {0, 1}mµ s.t.
⊕2p−1

j=1 (cwj ⊕
G(sγ,j)) = eδ · b.

7: Set σi,γ′ ← (sγ′,1·Aγ′ [i, 1])|| . . . ||(sγ′,2p−1 ·Aγ′ [i, 2p−1]) for all 1 ≤ i ≤ p, 1 ≤ γ′ ≤ ν.
8: Set σi = σi,1|| . . . ||σi,ν for 1 ≤ i ≤ p.
9: Let ki = (σi||cw1|| . . . ||cw2p−1) for 1 ≤ i ≤ p.

10: Return (k1, . . . , kp).



Function Secret Sharing 15

Algorithm 4 Evalp0(i, ki, x)

1: Let G : {0, 1}λ −→ {0, 1}mµ be a PRG (µ is defined in line 2).
2: Let µ← d2n/2 · 2(p−1)/2e and let ν ← d2n/µe.
3: Regard x as a pair x = (γ′, δ′), γ′ ∈ [ν], δ′ ∈ [µ].
4: Parse ki as ki = (σi, cw1, . . . , cw2p−1).
5: Parse σi as σi = s1,1|| . . . ||s1,2p−1 || . . . ||sν,2p−1 .
6: Let yi ←

⊕
1≤j≤2p−1,
sγ′,j 6=0

(cwj ⊕G(sγ′,j)).

7: Return yi[δ
′].

We informally argue that (Genp0 ,Evalp0) is an FSS scheme for point
functions. The scheme is correct because of the following. If Genp0(ki, x)
outputs (k1, . . . , kp) then

⊕p
i=1 Eval

p0(i, ki, x) =
⊕p

i=1 yi[δ
′]. If γ′ 6= γ

then Aγ′ ∈ Ep and hence each of the terms cwj⊕G(sγ′,j) appears an even
number of times in

⊕p
i=1 yi, therefore canceling out and ensuring that⊕p

i=1 y = 0. However, if γ′ = γ then
⊕p

i=1 yi =
∑2p−1

j=1 cwj ⊕ G(sγ′,j).
By the definition of the correction words cw1, . . . , cw2p−1 we have that⊕p

i=1 yi[δ
′] = 0 if δ′ 6= δ while

⊕p
i=1 yi[δ

′] = b if δ′ = δ, i.e. if x = a.
The scheme (Genp0 ,Evalp0) is secret because each subset of at most p−1
keys ki includes p−1 strings σi = σi,1, . . . , σi,ν . The distribution of seeds
in σi,γ′ reflects the distribution of 1 bits in the i-th row of Aγ′ . However,
any p − 1 rows of Aγ′ are distributed identically, regardless of whether
Aγ′ is sampled randomly from Ep or it is sampled randomly from Op.
Therefore, the view of the strings σi does not give any information on γ.

In addition, cw1, . . . , cw2p−1 are masked by
⊕2p−1

j=1 G(sγ,j) and there is at
least one seed sγ,j which is not included in any of the keys in the subset.
Therefore, all the correction words together cannot be distinguished from
random strings of the appropriate length.
The length of a key ki that Genp0 outputs is a sum of the length of
σi, which is νλ · 2p−1 and the length of the correction words, which is
µm · 2p−1. The key size is therefore O(2n/22(p−1)/2(λ+m)).

3.2 Supporting New Function Classes

In Sections 3.2, 3.2, and 3.2, we (1) present general transformations for
obtaining FSS for new function classes from existing ones, (2) provide an
extension of the improved DPF construction from the previous section
to support the more general class of interval functions with minimal
increase in key size, and (3) extend further to the case of many parties,
where security is required to hold against coalitions of parties.

General Transformations We begin by describing a number of gen-
eral transformations to convert one or more existing function secret shar-
ing schemes into a new FSS scheme supporting a modified class of func-
tions. The important metrics to maintain are the key size and computa-
tion time of the modified scheme, as a function of the original(s). Slightly
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abusing notation, we denote by size(F) and time(F) the corresponding
values for the key size and computation time for the FSS scheme for F
(where the FSS scheme being referred to is clear from context).
Due to space constraints, we provide here only a brief summary of the
relevant closure properties, and defer their corresponding constructions
and proofs to the full version of the paper.

1. Including the Zero Function: F → F ∪ {0}.
For any FSS scheme for class F , there exists a FSS scheme for the
class F together with the all 0s function, 0(x) = 0 ∀x. It holds that
size(F ∪ {0}) = size(F), time(F ∪ {0}) = time(F).

2. Pre-composition with Arbitrary Function: (F , g)→ F ◦ g.
For any FSS scheme for function class F = {f : G1 → G}, and
arbitrary fixed public function g : G2 → G1, there exists an FSS
scheme for class F ◦ g := {f ◦ g : G2 → G|f ∈ F}, (where functions
in F ◦ g are described as the pair (f, g)). The resulting key size is
equal to |g|+ size(F), and the computation time is |g|+ time(F).
This transformation extends to the case where the choice of function
g may be made dependent on the secret function f , as long as the
corresponding distribution of g is computationally indistinguishable
from one independent of f . For example, g may consist of an en-
cryption of some portion of f ; indeed, such an approach can be used
to bootstrap an FSS scheme for NC1 to one supporting all P/poly,
making use of fully homomorphic encryption (see Section 4.3).

3. Post-composition with Linear Function: (F , L)→ L ◦ F .
For any FSS for function class F = {f : G1 → G} and for any fixed
linear function L : G → G0, there exists a FSS scheme for class
L ◦ F := {L ◦ f |f ∈ F} of functions from G→ G0 (where functions
(L◦f) ∈ L◦F are described by the pair (L, f)). The resulting scheme
satisfies size(L ◦F) = size(F) + |L| and time(L ◦F) = time(F) + |L|.

4. Linear Combination of FSSes: (F ,G)→ F + G.
Given FSS schemes for families F ,G taking G1 → G, there exists
an FSS scheme for class F + G := {f ⊕ g|f ∈ F , g ∈ G}, with key
size equal to size(F + G) = size(F) + size(G) and evaluation time
time(F + G) = time(F) + time(G).

5. Union of Function Families: (F1,F2)→ F1 ∪ F2.
Given FSS schemes for families F ,G, there exists an FSS scheme for
the class F ∪ G, with key size and time complexities as in Transfor-
mation 4 (combining with Transformation 1).

6. FSS for Small Function Classes: Arbitrary F , with time(F) ∼
|F|, but short keys. For any class of functions F with some canonical
indexing, and a DPF (i.e., FSS for class of point functions) with
domain size |F|, there exists an FSS scheme for F with computation
time O (|F| · time(DPF ) ·maxf∈F |f |) and key size size(DPF ).

We describe useful function classes supported via combinations of the
above transformations.

1. NC0 functions.
For each constant depth d ∈ N and input/output bit-lengths n,m, by
Transformation 6, we obtain an FSS scheme supporting the class Cd of
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depth-d boolean circuits with input {0, 1}n, output {0, 1}m, and fan-in 2.
The important observation is that we may secret share the entire circuit
C by independently sharing m separate 1-bit-output sub-circuits (which

each has O(n2d) possibilities) instead of separately treating all possible

mO(n2d ) values for all of C.
Plugging in the state-of-the-art DPF instantiations (as given in Sec-
tion 3.1), the resulting (server-side) runtime of the scheme is time(Cd) ∈
O(λn2dm), and the key size is O(λm logn), where λ is the seed length
for the underlying pseudorandom generator, and the hidden constants
include a factor of 2d.

2. Constant-conjunction search queries.
As a consequence of Transformation 6, together with the best known
DPF instantiations (given in Section 3.1) with key size O(λn) for domain
size 2n and PRG seed length λ, we obtain an FSS scheme for the class
Match` of data-matching functions, for a constant number of data entries
`, where each of which may take one of polynomially many |G1| ∈ nO(1)

possible values. That is, for canonical nonzero element g ∈ G,

Match` =
{
fS,v : Gn1 → G

}
S⊂[n],
|S|≤`,
v∈G`1

s.t. fS,v(x) =

{
g if xi = vi ∀i ∈ S
0 else

.

Indeed, the class Match` contains
(
n
`

)
|G1|` ∈ O(n`|G1|`) different func-

tions. Thus, for N := (n|G1|)`, we obtain a FSS scheme supporting
Match` with evaluation time O(λN logN) and key size O(λ logN). For
the case of |G1| ∈ O(1), these correspond to runtime O(λn`` logn) and
key size O(λ` logn).

3. Interval functions: Black-box from DPF.
The class of interval functions consists of those functions fa,b which out-
put a fixed element g ∈ G precisely for inputs x that lie within the
interval a < x < b, and 0 ∈ G otherwise.

F intn =
{
f(a,b) : {0, 1}n → G

}
0≤a
≤b<2n

, where f(a,b)(x) =

{
g a < x < b

0 else
.

Lemma 1. Based on any DPF (i.e., FSS scheme for the class of multi-
bit point functions) with key size s, there exists an FSS scheme for family
F intn , with key sizes O(sn).

Intuitively, we express the condition x < a as the disjunction of (up to)
n mutually inconsistent exact prefix-matching conditions, such that an
element x is less than a precisely if it contains exactly one the prefixes.
(Viewing the target value a as a path down a binary tree, this amounts
to the sequence of (up to) n prefixes that agree with a up to some level
i, but then continue to 0 at level i+1 whereas a continues to 1). We thus
attain the desired FSS as a linear combination of n DPFs, each acting
on a prefix of the input x (using Transformations 2 and 4).
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Two-key FSS for Comparison and Interval Functions We
show efficient constructions of FSS for the family F<n of all comparison
functions from {0, 1}n to some finite group G. The class of comparison
functions consists of those functions fa,g which output a fixed element
g ∈ G for inputs x that lie within the interval 0 ≤ x < a, and 0 ∈ G
otherwise.

F<n =
{
fa,g : {0, 1}n → G

}
0≤a<2n

, where fa,g(x) =

{
g x < a

0 else
.

Note that (by Transformation 4 above), supporting comparison functions
also directly yields FSS for interval functions, with a factor of 2 overhead.
We describe a two-key construction which is a natural extension of the
two-party DPF construction in Algorithms 1 and 2. The key size of this
construction is larger by an additive factor of n log |G| compared to the
key size of the DPF construction.
The scheme for comparison functions has a similar structure to the
scheme for DPF. Again, each of the keys k0, k1 generated by Gen<(1λ, a, g)
represents a binary tree of depth n, and Eval<(β, kβ , x) traverses the tree
defined by kβ to the leaf x = x1, . . . , xn.
However, there are several key differences between the scheme for com-
parison functions and the DPF scheme. First, the objects in each node
of the tree are group elements, generalizing the approach in the DPF
scheme. In addition, similarly to the DPF scheme, when the path to x
diverges from the path to a, if x ≥ a then the sum of the two group ele-
ments generated by Eval<(0, k0, x) and Eval<(1, k1, x) is 0 for any node
from the point of divergence to the leaf. However, if x < a then the sum
of the two group elements in every node is g. Finally, the current Gen
algorithm returns correct keys with probability 1.

Notation 3 Let G be an abelian group with group operation + (while ⊕
denotes the exclusive-or of bits), let 0 ∈ G denote the identity element,
let g ∈ G and let −g denote the inverse of g in the group. Let ea · g
denote a sequence of 2|a| elements in G such that the element at location
a is g and all other elements in the sequence are the identity element.
We assume that the length of ea is determined by the domain of a.

Notation 4 Let G be a group, let g ∈ G and let b ∈ −1, 0, 1. We denote
by g · b a group element that is the identity unit 0 if b = 0, is equal to
g if b = 1 and is equal to −g if b = −1. Let ca · g be a sequence in of
2|a| elements with g in every location a′ such that a′ < a and 0 in every
other location. We assume that the length of ca · g is determined by the
domain of a.

Notation 5 Let Ep,q (Op,q) be the set of all p×qp−1 arrays over the set
{0, . . . , q−1} such that the sum of elements in every column is 0 modulo
q (1 modulo q) and every column appears exactly once in the array.
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Algorithm 5 Gen<(1λ, a, g)

1: Let G : {0, 1}λ −→ {0, 1}2λ+2 log |G|+2 be a PRG.
2: Choose three random seeds S0

a1 [1], S1
a1 [1], S0

¬a1 [1] ∈ {0, 1}λ and set S1
¬a1 [1] ←

S0
¬a1 [1].

3: Choose random bits T βα [1], α, β ∈ {0, 1}, subject to T 0
a1 [1] 6= T 1

a1 [1] and T 0
¬a1 [1] =

T 1
¬a1 [1].

4: Choose random elements V βα [1] ∈ G, α, β ∈ {0, 1}, subject to V 0
a1 [1]+(−V 1

a1 [1]) = 0
and V 0

¬a1 [1] + (−V 1
¬a1 [1]) = g · a1.

5: for i = 1 to n− 1 do
6: Let G(Sβai [i]) = sβ0 ||s

β
1 ||t

β
0 ||t

β
1 ||v

β
0 ||v

β
1 , where sβα ∈ {0, 1}λ, tβα ∈ {0, 1} and vβα ∈

G for α, β = 0, 1.
7: Randomly choose cs0,ai+1 , cs1,ai+1 ∈ {0, 1}λ.

8: Randomly choose cs0,¬ai+1 , cs1,¬ai+1 ∈ {0, 1}λ s.t.
⊕1

β=0(csβ,¬ai+1⊕s
β
¬ai+1

) =
0.

9: Randomly choose ct0,ai+1 , ct1,ai+1 ∈ {0, 1} s.t.
⊕1

β=0(ctβ,ai+1 ⊕ t
β
ai+1

) = 1.

10: Randomly choose ct0,¬ai+1 , ct1,¬ai+1 ∈ {0, 1} s.t.
⊕1

β=0(ctβ,¬ai+1⊕t
β
¬ai+1

) = 0.

11: Randomly choose cv0,ai+1 , cv1,ai+1 ∈ G s.t.
∑1
β=0(cvτ,ai+1 + vβai+1

) · (−1)β = 0,

for τ = T βai [i].
12: Randomly choose cv0,¬ai+1 , cv1,¬ai+1 ∈ G s.t.

∑1
β=0(cvτ,¬ai+1 + vβ¬ai+1

) ·
(−1)β = g · ai+1, for τ = T β¬ai [i].

13: Set CWβ [i]← csβ,0||csβ,1||ctβ,0||ctβ,1||cvβ,0||cvβ,1 for β = 0, 1.
14: Set Sβα[i+ 1]← sβα ⊕ csτ,α for τ = T βai [i] and α, β ∈ {0, 1}.
15: Set T βα [i+ 1]← tβα ⊕ ctτ,α for τ = T βai [i] and α, β ∈ {0, 1}.
16: end for
17: Set kβ ← ((Sβ0 [1], Sβ1 [1], T β0 [1], T β1 [1], V β0 [1], V β1 [1]), (CW0[1], CW1[1], . . . , CW0[n−

1], CW1[n− 1])).
18: Return (k0, k1).

Algorithm 6 Eval<(β, kβ , x)

1: Let G : {0, 1}λ −→ {0, 1}2λ+2 log |G|+2 be a PRG.
2: Let the binary representation of x be x = x1, . . . , xn.
3: Let kβ = ((Sβ0 [1], Sβ1 [1], T β0 [1], T β1 [1], V β0 [1], V β1 [1]), (CW0[1], CW1[1], . . . , CW0[n −

1], CW1[n− 1])).
4: Set Sβ ← Sβx1 [1].
5: Set T β ← T βx1 [1].
6: Set V β ← V βx1 [1].
7: for i = 2 to n do
8: Parse G(Sβ) as G(Sβ) = s0||s1||t0||t1||v0||v1.
9: Let CWTβ [i− 1] = csTβ ,0||csTβ ,1||ctTβ ,0||ctTβ ,1||cvTβ ,0||cvTβ ,1.

10: Set Sβ ← sxi ⊕ csTβ ,xi .
11: Set T β ← txi ⊕ ctTβ ,xi .
12: Set V β ← V β + (vxi + cvTβ ,xi).
13: end for
14: Return V β · (−1)β .
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We prove the correctness and security of (Gen<,Eval<) via the following
sequence of claims. Due to space limitations, we omit proofs of these
claims, and refer the reader to the full version of this paper.

Lemma 2. For every n ∈ N, every a, x ∈ {0, 1}n, every finite abelian
group G, every g ∈ G and every i, 1 ≤ i ≤ n,

1. If (x1, . . . , xi) = (a1, . . . , ai) then for β = 0, 1, the values Sβ and T β

that Eval<(β, kβ , x) computes are equal to the values Sβai [i] and T βai [i]
(respectively) that Gen<(1λ, a, g) computes; in addition, T 0⊕T 1 = 1.

2. If (x1, . . . , xi) 6= (a1, . . . , ai) then S0 = S1 and T 0 = T 1.

Building atop Lemma 2, we arrive at the desired correctness guarantee:

Proposition 1 (Correctness). For every n ∈ N, every a, x ∈ {0, 1}n,
every finite abelian group G and every g ∈ G, if (k0, k1)← Gen<(1λ, a, g)
then Eval<(0, k0, x)⊕ Eval<(1, k1, x) = f<a,g(x).

Theorem 6. For every n ∈ N, a ∈ {0, 1}n, every security parameter
λ ∈ N and every finite abelian group G, (Gen<,Eval<) is a two-key FSS
scheme for the family of comparison functions from {0, 1}n to G, with
key size O(n(λ+ log |G|)).

We remark that, via a simple transformation, the constructed FSS for
comparison functions also directly yields an FSS scheme for point func-
tions over a general abelian group G.

Corollary 1. For every n ∈ N, every security parameter λ ∈ N and
every finite abelian group G there exists a two-key scheme for the family
of point functions from {0, 1}n to G, without errors and with key size
O(n(λ+ log |G|)).

Proof. A point function is a linear combination of two comparison func-
tions. Specifically, Pa,g(x) = f<a+1(x) + (−f<a (x)), where −f<a (x) is the
inverse of f<a (x) in G. The corollary follows from Theorem 6 and the
linear combination of FSS schemes in Section 3.2.

Extending to the Many-Party Setting We construct a scheme
for the family of comparison functions from {0, 1}n to an abelian group
G that is secure against coalitions of all but one of the keys. The scheme,
defined in Algorithms 7 and 8, has a similar structure to Algorithms 3
and 4.

There are several differences between the current scheme and the DPF
scheme. The scheme for comparison functions is over G and the choice
of arrays Aγ′ is from the sets Ep,q and Op,q, for q = |G|, instead of
choosing the arrays from Ep or Op. The correction words, cw1, . . . , cwν ,
are chosen in a different way in line 6 of Algorithm 7 and additional
group elements, v1, . . . , vν , are used in line 7 of Algorithm 7 and line 6 of
Algorithm 8. The reason for the differences in cw1, . . . , cwν and v1, . . . , vν
is that f<a,g(x) = g for any x < a, while Pa,b(x) = 0 for any x < a.
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Theorem 7. For every security parameter λ ∈ N, every n, p ∈ N, every
abelian group G, |G| = q, every a, x ∈ {0, 1}n and every g ∈ G, the
pair of algorithms (Genp,Evalp) is an FSS scheme for the family of all
comparison functions from {0, 1}n to G, such that Gen outputs p keys
(k1, . . . , kp), the scheme is secure against any coalition of at most p− 1
keys and the key size is O(2n/2 · q(p−1)/2 log q).

Corollary 2. For any abelian group G = G1 × . . . × Gr, such that
|Gi| = qi for i = 1, . . . , r, there exists an FSS scheme for the family
of comparison functions from {0, 1}n to G that generates p keys and
is secure against coalitions of up to p − 1 keys with key size O(2n/2 ·
q(p−1)/2∑p

i=1 log qi). This result is obtained by running (Genp,Evalp)
separately on each component Gi.

Algorithm 7 Genp(1λ, a, g)

1: Let G : {0, 1}λ −→ Gµ be a PRG (µ is defined in line 2).
2: Let µ← d2n/2 · q(p−1)/2e and let ν ← d2n/µe.
3: Regard a as a pair a = (γ, δ), γ ∈ {0, 1}ν , δ ∈ {0, 1}µ.
4: Choose ν random arrays A1, . . . , Aν , s.t. Aγ ∈ Op,q and Aγ′ ∈ Ep,q for all γ′ 6= γ.
5: Choose ν · qp−1 random seeds s1,1, . . . , sν,qp−1 ∈ {0, 1}λ.

6: Randomly choose cw1, . . . , cwqp−1 ∈ Gµ s.t.
∑qp−1

j=1 (cwj +G(sγ,j)) = cδ.
7: Select v1, . . . , vp ∈ Gν randomly s.t.

∑p
i=1 vi = cγ · g.

8: If Aγ′ [i, j] 6= 0 set σi,γ′,j ← (sγ′,j , Aγ′ [i, j]), otherwise σi,γ′,j ← (0, 0), for all
1 ≤ i ≤ p, 1 ≤ γ′ ≤ ν, 1 ≤ j ≤ qp−1.

9: Set σi,γ′ ← (σi,γ′,1|| . . . ||σi,γ′,qp−1), for all 1 ≤ i ≤ p, 1 ≤ γ′ ≤ ν.
10: Set σi = σi,1|| . . . ||σi,ν for 1 ≤ i ≤ p.
11: Let ki = (σi, vi, cw1, . . . , cwqp−1) for 1 ≤ i ≤ p.
12: Return (k1, . . . , kp).

Algorithm 8 Evalp(i, ki, x)

1: Let G : {0, 1}λ −→ Gµ be a PRG (µ is defined in line 2).
2: Let µ← d2n/2 · q(p−1)/2e and let ν ← d2n/µe.
3: Regard x as a pair x = (γ′, δ′), γ′ ∈ {0, 1}ν , δ′ ∈ {0, 1}µ.
4: Parse ki as ki = (σi, vi, cw1, . . . , cwqp−1).
5: Parse σi as σi = (s1,1, A1[i, 1])|| . . . ||(s1,qp−1 , A1[i, qp−1])|| . . . ||(sν,qp−1 , Aν [ν, qp−1]).
6: Let yi ← vi[γ

′] +
∑

1≤j≤qp−1

Aγ′ [i,j] 6=0

Aγ′ [i, j] · (cwj +G(sγ′,j)).

7: Return yi[δ
′].

Proposition 2 (Correctness). For every security parameter λ ∈ N,
every n, p ∈ N, every abelian group G, every a, x ∈ {0, 1}n and every g ∈
G, if (k1, . . . , kp)← Genp(1λ, a, g) then

∑p
i=1 Eval

p(i, ki, x) = f<a,g(x).
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3.3 General FSS from Obfuscation

In this section, we provide general positive constructions of FSS based
on program obfuscation. We first obtain FSS schemes for P/poly given
access to a program obfuscator that satisfies a virtual black-box (VBB)
notion of security [3]. We then build on top of recent advances in indistin-
guishability obfuscation (iO) [3, 22] to demonstrate a similar conclusion
from iO with sub-exponential hardness.
In particular, building atop recent candidate obfuscation constructions,
these provide us with heuristic constructions of FSS for any efficiently
computable function class of choice. Further, it yields provably secure
solutions within idealized models, for which secure constructions of VBB
obfuscation have been constructed [9, 2], e.g. in the generic multilinear
map model, or in settings with secure hardware.
For purposes of space limits, we describe only the high-level intuition and
defer complete constructions and proofs of security to the full version.

General FSS from Virtual Black Box (VBB) Obfuscation

Proposition 3. Assume the existence of an ideal virtual black-box ob-
fuscation oracle for P/poly, and the existence of one-way functions. Then
there exists an FSS scheme supporting P/poly.

Intuitively, the FSS construction works by obfuscating (1) a pseudoran-
dom function (PRF) Fs for one party, and (2) (C − Fs) for the desired
circuit C for the second party. The VBB property enables a party’s key
to be simulated given black-box access to the underlying program, which
can in turn be simulated (by the security of the PRF) by a truly random
sequence of outputs.

General FSS From Sub-Exponential iO Our construction relies
on a recent work of Canetti et al. [13] which demonstrates that sub-
exponential iO implies a notion of probabilistic iO (piO). Loosely, piO
converts a randomized program into a deterministic obfuscated program,
and provides the guarantee that it is hard to distinguish obfuscations of
two (randomized) circuits whose output distributions at each input are
computationally indistinguishable, possibly in the presence of auxiliary
input. We refer the reader to [13] for a full definition.

Theorem 8. Assume the existence of sub-exponentially secure indistin-
guishability obfuscation and sub-exponentially secure one-way functions.
Then there exists an FSS scheme supporting P/poly.

The construction makes use of a piO-obfuscated (randomized) program
P that takes as input x, samples a random value R, and outputs encryp-
tions of the values R and f(x)− R for the secret function f , under two
different hardcoded public keys (i.e., EncpkA(R) and EncpkB (f(x)−R)),
as described in Figure 1. Recall that while this program P is random-
ized, its piO-obfuscation P̃ is a deterministic circuit. A party’s FSS key
for f ∈ F will consist of this obfuscated program P̃ , together with one
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of the secret keys skA or skB . To evaluate his FSS share on an input x,
the party runs P̃ (x), and decrypts his corresponding output. We remark
that (sub-exponentially) secure public-key encryption (PKE) is implied
by (sub-exponentially) secure indistinguishability obfuscation together
with (sub-exponentially) secure one-way functions [43].

Program FSSf,pkA,pkB
Hardcoded: f ∈ F , public keys pkA, pkB .
Input: x ∈ {0, 1}n. Randomness: R, rA, rB .
1. Encrypt R under pkA, as ŷA ← EncpkA(R; rA).
2. Encrypt f(x)−R under pkB , as ŷB ← EncpkB (f(x)−R; rB).
3. Output (ŷA, ŷB).

Fig. 1: Real program obfuscated in Gen(1λ, f).

Correctness of the scheme follows by the correctness of the encryption
and the piO: since the original program P outputs value pairs (ŷA, ŷB)
for which DecskA(ŷA) + DecskB (ŷB) = f(x), the same property (which
is efficiently testable given auxiliary input skA, skB) must hold for the
outputs of P̃ . By the security of the PKE, a party learns nothing from
the second encrypted output, and thus his own decrypted shares (either
R or f(x) − R) appear indistinguishable from random values. This is
formalized in the proof by replacing the obfuscated program P̃ with
an obfuscation of a fake program which instead outputs EncpkA(R) and
EncpkB (R′) for a second independent random value R′.

4 Relation to Other Primitives

In this section, we explore the relation between FSS and other crypto-
graphic primitives. We first demonstrate in Section 4.1 that once the
supported function class F becomes reasonably rich, each share of func-
tion f ∈ F must be a pseudorandom function. This holds in particular
for the special case of point functions. We next provide evidence in Sec-
tion 4.2 that achieving FSS for certain function classes (beginning as
low as AC0) is likely to require cryptographic tools heavier than one-
way functions or even oblivious transfer. This is done by showing that
such FSS schemes imply low-communication general secure computation
protocols that rely on reusable preprocessing. Such protocols are cur-
rently only achievable using stronger cryptographic primitives, namely
somewhat-homomorphic encryption or reusable garbled circuits. Finally,
in Section 4.3 we show that, assuming fully homomorphic encryption
(FHE) with decryption in NC1 (as is the case for nearly all existing
constructions, e.g. [8, 25, 10]), FSS for general functions is implied by the
existence of FSS for NC1.

4.1 Key Functions are Pseudorandom Functions

Parties’ keys in the FSS each define their own function, taking inputs
x to output shares Eval(b, kb, x). This function serves as one piece of
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the secret function being shared. A natural question is: what can we say
about these functions? Can they have any sort of structure? Or, does the
security property of the FSS together with the linearity of the output
decoding procedure directly enforce a particular structure on the output
share functions themselves?
We show that, in fact, if the supported class F is sufficiently rich, in the
sense that it “efficiently spans” the whole function space, then it must
be that the parties’ output share functions Eval(b, kb, x) themselves are
pseudorandom functions (PRFs). We formalize this condition on F as
“poly-spanning.”

Definition 4. A family of functions F = {f : Gn → Gm} is said to be
poly-spanning if for each polynomial p(n) there exists a polynomial q(n)

and efficient procedure P : ({0, 1}n × {0, 1}m)p(n) → Fq(n) mapping p(n)
pairs of input-output assignments to a collection of q(n) functions from
F , with P

(
(xi, yi)i∈[p(n)]

)
= (fj)j∈[q(n)] such that the function f ′ :=∑

j∈[q(n)] fj satisfies f ′(xi) = yi for every i ∈ [p(n)].

Remark 3 (Examples of poly-spanning function families).

– Multi-bit Point Functions. The class of functions {fx∗,y∗} over
x∗ ∈ {0, 1}n, y∗ ∈ {0, 1}m where fx∗,y∗(x) = y∗ if x = x∗ and
0 otherwise. Indeed, the desired procedure P is simply given by
P
(
(xi, yi)i∈[p(n)]

)
= (fxi,yi)i∈[p(n)].

– Comparison Functions. The class of comparison functions F≤n .
Indeed, the desired procedure P is given as follows:

1: Initialize S ← ∅.
2: Sort inputs x1, . . . , xp(n) ∈ [2n] as x′1 ≤ . . . ≤ x′p(n). Denote their

outputs as y′i.
3: for i = p(n) to 1 do
4: if y′i 6= y′i+1 (where y′p(n)+1 := 0) then

5: Include the new function f≤
x′i

(to flip the output of the

sum): S ← S ∪ {f≤
x′i
}

6: end if
7: end for
8: return S

We now introduce notation for the output share function that we study.

Definition 5. Let (Gen,Eval) be an FSS scheme w.r.t. function class
F . Then for each f ∈ F and b ∈ {0, 1}, we denote by OutputSharef,b
the function family {Eval(b, kb, ·)}kbdefined by sampling and evaluation
procedures:

– Sample: Outputs a key kb, where (k0, k1)← Gen(1λ, f).
– Evaluate: On input x, computes Eval(b, kb, x).

Theorem 9. Let (Gen,Eval) be a FSS scheme (as per Definition 2)
w.r.t. a poly-spanning function class F . Then for every f ∈ F and every
b ∈ {0, 1}, the function family OutputSharef,b as given in Definition 5 is
a PRF family (against nonuniform adversaries).
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Proof. Intuitively, we first show that oracle access to a randomly sampled
party key function OutputSharef,b (over the randomness of Gen) must be
computationally indistinguishable from oracle access to the distribution
(OutputSharef,b+

∑
i∈S fi) for any fixed polynomial-size subset S of func-

tions fi ∈ F in the supported function class. Then, we show that if F
is poly-spanning, then for any possible PRF distinguishing adversary A,
we can fool this A, guaranteeing that he cannot succeed in distinguishing
from a random function, with an appropriate carefully tailored choice of
functions {fi}i∈S ⊂ F .
We defer the full proof of Theorem 9 to the full version of this paper.

4.2 Barriers Toward FSS for Expressive Function
Classes

We now turn to exploring likely barriers in constructing FSS for certain
function classes based on lightweight cryptographic tools. Our results
in this section take the following form: Assume there exists FSS for a
class of functions containing F ◦ Dec, where F is some function class
and Dec corresponds to the complexity of decryption of a symmetric-
key encryption scheme. Then there exists a particular form of highly
communication-efficient secure computation for functions in F , which is
currently only known to exist based on F-homomorphic encryption7 or
reusable garbled circuits for F . In particular:

– At the high end, FSS for P/poly implies a form of secure compu-
tation whose only known constructions rely on fully homomorphic
encryption or reusable garbled circuits for P/poly. We conclude that
FSS for P/poly is likely to require heavy cryptographic machinery.

– At the low end, FSS for AC0 in combination with any symmetric-key
encryption scheme with decryption in AC0 together imply a form of
secure computation only currently known to exist based on exis-
tence of AC0-homomorphic encryption or reusable garbled circuits
for AC0.
In particular, symmetric-key encryption with decryption in AC0 is
implied by sub-exponential hardness of Learning Parity with Noise
(LPN) [7]. However, despite significant efforts in the cryptographic
community, it is unknown even how to build from this assumption
collision resistant hashing, much less stronger primitives like homo-
morphic encryption that imply them [35]. Indeed, all proposed con-
structions to date of homomorphic encryption and reusable garbled
circuits (even for the restricted class AC0), such as those from [11,
10, 33], rely on Learning With Errors (LWE) [42] or similar lattice-
based assumptions; a construction under weaker or significantly dif-
ferent assumptions such as LPN would be considered a major result.
We conclude that FSS for AC0 is unlikely to be achieved based on
sub-exponential LPN (or any weaker) assumption alone.
We contrast this conclusion with our construction of FSS for various
strict subclasses of AC0 in Section 3.2 based on one-way functions.

7 That is, semantically secure encryption supporting compact homomorphic evaluation
of the function class F .
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We now formalize the above discussion. Concretely, we demonstrate
that FSS for a function class F ◦ Dec (formally defined below) yields a
construction of exceedingly communication-efficient (semi-honest) secure
multiparty computation (MPC) in the preprocessing model, for the func-
tion class F . That is, given an offline setup phase independent of parties’
inputs, the parties A,B can reuse this setup to achieve secure evaluation
of a fixed f ∈ F on arbitrarily many input pairs (xA1 , x

B
1 ), (xA2 , x

B
2 ), . . .

in the online phase with communication that depends only on the size
of the inputs and outputs of f , and not on the size of f itself. To date,
the only other known approaches to achieving MPC with this efficiency
feature (even when allowing reusable preprocessing) rely on strong cryp-
tographic tools: either fully homomorphic encryption for F (as in [23, 1])
or reusable garbled circuits for F (as in [33].8)
Intuitively, the FSS enables communication efficiency as follows. Suppose
we wish to achieve secure computation of a function f ∈ F . In the
offline phase, the parties A,B will each receive9 a secret key skA, skB
for the symmetric key encryption scheme, and FSS keys of a function
f̂sk ∈ F ◦ Dec that depends on both skA and skB . This function f̂sk will
take as input a pair of ciphertexts (x̂A, x̂B), decrypts each with respect to
the corresponding hardcoded secret key skA or skB , and then evaluates
the function f on the resulting values. In the online phase, for each
desired input pair (xAi , x

B
i ), the parties exchange encryptions of their

private inputs under their respective secret keys. They then use their
FSS keys to compute output shares of f̂sk evaluated on input this pair of
ciphertexts (x̂Ai , x̂

B
i ). Finally, the computed output shares are exchanged,

and the value of f̂sk(x̂
A
i , x̂

B
i ) is reconstructed. By the correctness of the

FSS scheme and the choice of f̂sk, this will exactly allow the parties to
compute the desired value f(xAi , f

B
i ). And by the security of the FSS

and the encryption scheme, no additional information on the inputs will
be revealed.

We now formalize these intuitions.

Remark 4 (MPC Security). Recall that MPC security is defined with
respect to the real/ideal world paradigm. Very loosely, for every PPT
adversary A in a real-world execution of the protocol, there exists a
PPT simulator in the ideal-world execution (receiving only the function
output(s)) who can consistently simulate the experiment output. We
refer the reader to e.g. [46, 30] for a formal definition.

Definition 6 (Communication-Efficient Online MPC for F). It
is said that communication-efficient online MPC for the function class F

8 Loosely, the offline phase will result in one party receiving a reusable garbled circuit
of f and the second will receive the information to generate garbled input labels; the
offline phase will only require communication on order the size of the garbled input
and output labels, and not the size of f itself.

9 For simplicity, we treat the offline setup phase as correlated randomness generated
and given to the two parties by some trusted source; in practice, this can be imple-
mented by running a standard MPC protocol between the two parties to securely
generate these values.
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exists if for any f ∈ F , there exists a distribution of correlated random-
ness (DA, DB), polynomial p, and a two-party protocol Π in the corre-
lated randomness model such that, for any ` ∈ N, and any sequence of
(possibly adaptively chosen) inputs (xA1 , x

B
1 ), . . . , (xA` , x

B
` ), the protocol

Π achieves secure evaluation of f on the input pairs in the semi-honest
model, with (online) communication complexity O

(∑`
i=1

(
|xAi | + |xBi | +

|f(xAi , x
B
i )|
)
· p(λ)

)
, where λ is the security parameter. In particular, the

online communication complexity is independent of the size of the de-
scription of f .

Definition 7. For a given symmetric encryption scheme (Gen,Enc,Dec)
and function class F , we define the function class F ◦ Dec := {f ◦
(DecskA × DecskB ) : f ∈ F , skA, skB ∈ Supp(Gen(1k))}.

Theorem 10. Assume the existence of symmetric-key encryption with
decryption Dec, and FSS for F ◦ Dec (as in Definition 7). Then there
exists communication-efficient online MPC for the class F , as in Defi-
nition 6.

Due to space limitations, we defer the proof of Theorem 10 to the full
version of this paper.

Remark 5. We note that the proof of Theorem 10 does not rely directly
on the linearity of the output decoding procedure of the FSS scheme.
Rather, the same result holds identically for any output decoding func-
tion that still guarantees function privacy (to preserve security of the
MPC) and succinctness (to maintain communication efficiency in the
online phase).

We now address the implications of Theorem 10 to two specific function
classes F ◦ Dec.

Corollary 3 (FSS for P/poly). Assuming FSS for P/poly, there exists
communication-efficient online MPC for all P/poly.

Proof. By Theorem 9, FSS for P/poly implies the existence of pseudo-
random functions, which thus implies secure symmetric-key encryption
with decryption in P/poly. The corollary hence follows directly from
Theorem 10.

Corollary 4 (FSS for AC0). Assuming FSS for AC0 and sub-exponential
hardness of LPN, there exists communication-efficient online MPC for
AC0.

Proof. Follows from Theorem 10 and [7].

4.3 Bootstrapping with Fully Homomorphic Encryption

We show that FSS schemes enjoy a convenient bootstrapping property,
when paired with fully homomorphic encryption (FHE). Namely, assum-
ing the existence of FHE with decryption in NC1 (as is the case for es-
sentially all existing constructions, e.g. [8, 25, 10]), then any FSS scheme
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supporting the class NC1 directly implies an FSS for the class of all
circuits, where the FSS key size grows with the size of the circuit being
secret shared.10

Proposition 4. Assuming the existence of fully homomorphic encryp-
tion with perfect correctness and decryption in NC1, and FSS for NC1,
then there exists a secure FSS scheme for P/poly.

Proof. Intuitively, the new FSS construction will work by sampling FSS
keys in the underlying NC1-supported scheme for the FHE decryption
function Decsk for random, secret sk, and additionally providing an en-
cryption Ĉ of a description of the desired circuit C ∈ P/poly. To evaluate,
the parties first homomorphically evaluate C on their input x using Ĉ,
and then use this evaluated ciphertext as the input to the FSS for Decsk.
We defer the full proof of Proposition 4 to the full version of this paper.
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